
在去年的CES上,我们就看到了大量的4K设备,而本届CES上,以三星、LG为代表的韩国厂商也展示了更多的4K设备,即便是不在4K主战场发力的夏普,也在其Q+电视上提供了4K播放的能力。在硬件已经就绪的情况下,软件并没有跟上脚步,4K源的匮乏仍然制约了4K的全面爆发。
解决源的问题除了需要电影制作发行公司的努力之外,还需要普通用户能够大量的创建4K视频,作为最流行的视频拍摄工具,手机当仁不让的承担起了主要的责任,去年,支持4K录制的手机开始上市,比如三星Galaxy Note3,其采用了高通骁龙800处理器平台,现在,高通致力于为未来的手机产品全面提供4K录制的支持,在CES2014上,高通也演示了这样的成熟方案。
另一方面,高通还在CES2014上推出了骁龙802平台,这个平台的主要承载终端是智能电视,它的主频为1.8GHz,采用四核设计,在功能特性上,大致和骁龙800、骁龙805相当,不过值得注意的是,骁龙802可以通过Hollywood Quality Video技术将普通的1080P视频实时转换成为接近于4K质量的视频,这个功能将极大的拓展了4K的源。
当然,目前4K全面普及仍然存在一些障碍,主要有两点,第一是大屏幕4K播放设备的价格仍然较高,距离主流市场仍然有一定的距离,第二是存储成本,尤其是手机存储成本,对于4K应用来说,仍然不够低廉,记者尝试录制了一段10秒钟的4K视频,就占据了60M的存储空间,一段三五分钟的视频就要占据上GB的空间,对于目前出货最大的16G容量手机而言,是个巨大的挑战。
好文章,需要你的鼓励
浙江大学团队提出动态专家搜索方法,让AI能根据不同问题灵活调整内部专家配置。该方法在数学、编程等任务上显著提升推理准确率,且不增加计算成本。研究发现不同类型问题偏爱不同专家配置,为AI推理优化开辟新路径。
清华大学研究团队提出SIRI方法,通过"压缩-扩张"交替训练策略,成功解决了大型推理模型"话多且准确率低"的问题。实验显示,该方法在数学竞赛题上将模型准确率提升43.2%的同时,输出长度减少46.9%,真正实现了效率与性能的双重优化,为AI模型训练提供了新思路。
南洋理工大学与腾讯联合研究团队开发出Rolling Forcing技术,实现AI视频实时流式生成的重大突破。该技术通过滚动窗口联合去噪、注意力锚点机制和高效训练算法三项创新,解决了长视频生成中的错误累积问题,可在单GPU上以16fps速度生成多分钟高质量视频,延迟仅0.76秒,质量漂移指标从传统方法的1.66降至0.01,为交互式媒体和内容创作开辟新可能。
华中科技大学研究团队发现,通过让AI模型学习解决几何问题,能够显著提升其空间理解能力。他们构建了包含约30000个几何题目的Euclid30K数据集,使用强化学习方法训练多个AI模型。实验结果显示,几何训练在四个空间智能测试基准上都带来显著提升,其中最佳模型达到49.6%准确率,超越此前最好成绩。这项研究揭示了基础几何知识对培养AI空间智能的重要价值。