
Google量子人工智能团队当地时间周二宣布,将开始设计和制造基于超导材料的量子信息处理器,这将使量子人工智能实验室利用自行设计的硬件进行量子计算方面的研究工作。
在量子处理器研发方面,Google与加利福尼亚大学圣巴巴拉分校的物理学家约翰•马丁尼斯(John Martinis)及其团队进行了合作。马丁尼斯是量子研究领域的领头羊,今年早些时候因在量子信息处理和计算领域的卓越成就被授予伦敦奖。
Google技术主管哈特穆特•内文(Hartmut Neven)周二在Google+上发帖称,“有了自己的硬件小组,量子人工智能团队就能制造和测试量子优化和推论处理器的新设计。”
量子人工智能实验室是Google、美国宇航局艾姆斯研究中心和高校空间研究协会在2013年联合成立的,目的是研究如何利用量子计算推动机器学习技术的发展。
量子计算机能解决传统计算机难以胜任的、不可想象地复杂的计算问题。当前的计算机中,数据是由0或1表示的。在量子计算机中,数据是由量子位表示的,可以同时是1和0。目前只有为数不多的几家公司在进行量子计算方面的研究,生产和运行量子计算机还存在物理和财务方面的障碍。
尽管Google在考虑利用自己的硬件进行量子计算方面的研究,但量子人工智能团队将继续使用D-Wave的量子计算机进行研究工作。D-Wave是世界上商业化销售量子计算机的第一家公司。内文在帖子中说,“我们将继续与D-Wave的科学家合作,在艾姆斯研究中心利用Vesuvius计算机进行研究工作。Vesuvius的处理器将被升级为1000量子位的华盛顿处理器。”
好文章,需要你的鼓励
浙江大学团队提出动态专家搜索方法,让AI能根据不同问题灵活调整内部专家配置。该方法在数学、编程等任务上显著提升推理准确率,且不增加计算成本。研究发现不同类型问题偏爱不同专家配置,为AI推理优化开辟新路径。
清华大学研究团队提出SIRI方法,通过"压缩-扩张"交替训练策略,成功解决了大型推理模型"话多且准确率低"的问题。实验显示,该方法在数学竞赛题上将模型准确率提升43.2%的同时,输出长度减少46.9%,真正实现了效率与性能的双重优化,为AI模型训练提供了新思路。
南洋理工大学与腾讯联合研究团队开发出Rolling Forcing技术,实现AI视频实时流式生成的重大突破。该技术通过滚动窗口联合去噪、注意力锚点机制和高效训练算法三项创新,解决了长视频生成中的错误累积问题,可在单GPU上以16fps速度生成多分钟高质量视频,延迟仅0.76秒,质量漂移指标从传统方法的1.66降至0.01,为交互式媒体和内容创作开辟新可能。
华中科技大学研究团队发现,通过让AI模型学习解决几何问题,能够显著提升其空间理解能力。他们构建了包含约30000个几何题目的Euclid30K数据集,使用强化学习方法训练多个AI模型。实验结果显示,几何训练在四个空间智能测试基准上都带来显著提升,其中最佳模型达到49.6%准确率,超越此前最好成绩。这项研究揭示了基础几何知识对培养AI空间智能的重要价值。