CNET科技行者 1月23日 北京消息 一部分人认为人工智能可以消除人类偏见。在商务、医药、学术、打击犯罪等领域,即使是简单的统计工具也远超人类。还有一部分人反对AI将偏见系统化,因为即使偏见未被编入程序,AI也自带偏见。
2016年,ProPublica(一个独立的非盈利新闻编辑部,为公众利益进行调查报道)发布了一份广泛引用的报告(Machine Bias),该报告认为,预测犯罪概率的常用算法(COMPAS)带有种族歧视。一份新的研究报告(The accuracy, fairness, and limits of predicting recidivism)显示,至少ProPublica提到的案例算法,双方不相上下,算法并不比人类精确公正。该报告还显示:某些情况下,人类对高级AI的需求被过度放大。
自2000年起,名为COMPAS的专有算法开始用于预测再次犯罪,即猜测某名罪犯是否会因再次犯罪而被逮捕。ProPublica的记者观察了来自佛罗里达州的罪犯样本,发现那些并未再犯的人群当中,被COMPAS错误标记为高风险再犯的黑人人数几乎是白人的两倍。而那些再犯人群中,被错误标记为低风险再犯的白人人数却是黑人的两倍,这激怒了公众。但此后,有报道又称,算法比人们想象中的公正。风险评分相同的黑人和白人,再犯的几率也相同,因此并不存在种族差异。算法是否公平,取决于衡量标准,任何算法都不可能满足所有标准。
研究人员将预测再犯(罪)概率的准确性作为主要衡量标准。受试网络用户阅读的罪犯信息涉及七个方面,包括年龄、性别和犯罪记录。研究人员使用COMPAS软件预测。
COMPAS内部的算法未知,但能够读取每个与人类预测的精准度和公正度基本相似,还有两大惊人发现。其一,已知罪犯种族(第一组受试者和COMPAS的使用数据均不涉及种族信息),第二组受试者预测再犯概率时表现的偏见度与不知情时基本一致。
其二,要与COMPAS媲美,无需137条数据(甚至7条都用不上),也不用聪明的头脑或算法。某次试验中,研究人员使用了一个极其简单的机器学习算法(逻辑回归),仅需罪犯的两条数据(年龄及此前犯罪的总次数),预测精准度就可高约65%。研究人员还尝试了一个需7条数据完成预测的强大算法(非线性支持向量机),但精准度并未提高。该项发现证实了一点(许多人工智能研究员也曾提及):“深度学习”这一时下热门技术并非万金油。有些时候,仅需最简单的算法和极少量数据即可解决问题。
此外,研究人员还想强调,预测社会问题并非总是有迹可循。这些算法预测的不是再犯的概率,而是被再次拘捕的概率。然而,即便同一种罪行,黑人往往比白人更容易入狱。因此,算法(或人类)如果从包含人类种族偏见的数据中学习预测模式,很容易过度预测黑人的再犯率,从而增加其入狱率,陷入不公平循环。
达特茅斯大学计算机科学家Hany Farid 曾与学生Julia Dressel(现已毕业)开展了一项研究,希望这一发现能让法院重新审视算法的地位,比如法官在得知网络投票可信度不亚于复杂的系统预测结果时,能够对其再次评估(补充一句,法官或许会更信任前者)。Farid称:“我们希望算法的工作原理更加透明。”
不少案例证明人工智能有时要比人类更精准公正。然而,反之亦然,人工智能和人类有时也不相上下。我们需要提倡此类研究,以验证AI能做什么,不能做什么。
好文章,需要你的鼓励
AIM Intelligence联合多所知名大学揭示了音频AI系统的重大安全漏洞,开发出名为WhisperInject的攻击方法。这种攻击能让看似无害的音频指令操控AI生成危险内容,成功率超过86%,完全绕过现有安全机制。研究暴露了多模态AI系统的系统性安全风险,对全球数十亿智能设备构成潜在威胁。
新加坡国立大学研究团队系统梳理了视觉强化学习领域的最新进展,涵盖超过200项代表性工作。研究将该领域归纳为四大方向:多模态大语言模型、视觉生成、统一模型框架和视觉-语言-动作模型,分析了从RLHF到可验证奖励范式的政策优化策略演进,并识别出样本效率、泛化能力和安全部署等关键挑战,为这一快速发展的交叉学科提供了完整的技术地图。
浙江大学研究团队通过OmniEAR基准测试揭示了当前AI模型在物理世界推理方面的严重缺陷。测试显示,即使最先进的AI在明确指令下能达到85-96%成功率,但面对需要从物理约束推断行动的任务时,成功率骤降至56-85%。研究发现信息过载反而降低AI协作能力,监督学习虽能改善单体任务但对多智能体协作效果甚微,表明当前架构存在根本局限性。
纽约大学和Aimpoint Digital Labs的研究团队首次揭示了Transformer模型训练中"大规模激活"的完整发展轨迹。这些影响力比普通激活大千倍的"超级激活"遵循可预测的数学规律,研究者开发出五参数公式能以98.4%准确率预测其变化。更重要的是,通过调整模型架构参数如注意力密度、宽深比等,可以在训练前就预测和控制这些关键激活的行为,为设计更高效、量化友好的AI模型提供了全新工具。