在许多情况下,人工智能在病情的预测和诊断的效率和精确度上甚至超过医生。但是,前提是大部分工作都要在精心控制的实验室中进行的,并且所基于的数据和图像均由专家进行采集和审查。
如今,越来越多的技术公司都在努力,尝试将人工智能引入真正的医疗保健体系中。
去年,美国食品和药物管理局(FDA)批准了第一个医疗机器学习应用程序Arterys Cardio DL。该程序通过使用深度学习算法来分析心脏的MRI图像,从而帮助医生识别患者的问题并进行诊断。
除此之外,还有一些AI应用程序试图在没有专家监督的情况下标记数据并诊断疾病。
最近,美国爱荷华州的IDx公司宣布,FDA已加快审查其创建的AI自动系统IDx-DR,以用于尽早发现糖尿病患者失明的主要原因——糖尿病视网膜病变,从而加以预防、提前治疗。
该系统由IEEE高级会员Michael Abramoff花费了21年开发,在没有眼科专家的帮助下,就能自行诊断。由于目前许多患者经常都要等待数周或数月才能看到眼科专家,无法及时诊断,因此,这一系统的出现患者来说可能会产生巨大影响。
Abramoff说,AI系统的自主性最初使监管者感到不舒服。 “基本上没有人在考虑算法的问题,”他说。因此,IDx公司和FDA用了7年时间来确定评估系统准确性和安全性的标准。 Abramoff补充道:“使监管机构能够理解算法至关重要。 这是一段漫长的旅程,但我希望能够尽快实现。”
据他介绍,IDx公司还对系统做了一些必要的调整,以便从实验室走出来,真正进入诊所,得以应用。比如,IDx团队添加了一个互动组件,当AI的诊断质量足够高时,系统就会将拍摄的视网膜图像情况反馈给护士或医生。 “拍摄视网膜并不容易,” Abramoff表示, “系统会告诉操作员他们是否需要重新拍摄图像。”
在对公开数据集进行早期测试后,IDx公司在去年夏天完成了一项900人的临床试验,将进行了四小时培训的系统及具有10年以上经验的专家通过摄取和分析视网膜图像,从而提供的诊断结果相比较。虽然Abramoff还拒绝分享审查结果,但他指出:“我们对此非常兴奋。”
可以看到,人工智能诊断在眼科领域已经得到了蓬勃发展,其中包括对先天性白内障和青光眼等疾病的诊断。例如,谷歌正在对DeepMind进行培训,以发现常见眼疾的迹象。这一早期的发展势头并不令人意外,因为该病症具有明确的诊断和治疗标准,而且眼睛易于接近,因此非常适合应用新技术。例如,此前FDA批准使用的第一种基因疗法之一针对的就是遗传性视力丧失的疾病。
总体来说,AI更适合解决定义明确的问题和任务。因此,具有硬数据的医学领域(例如病理图像)对于AI的应用往往比只有软数据的领域(诸如来自电子医疗记录的一般诊断)更成熟。
如Abramoff所说,随着AI技术的日渐成熟,其诊断结果也将愈加客观,这将使得越来越多的医疗工作者得以从繁琐的工作中解脱出来,将更多的精力放在症状和治疗方案的判断和商定,以及其它医学研究中。
好文章,需要你的鼓励
AIM Intelligence联合多所知名大学揭示了音频AI系统的重大安全漏洞,开发出名为WhisperInject的攻击方法。这种攻击能让看似无害的音频指令操控AI生成危险内容,成功率超过86%,完全绕过现有安全机制。研究暴露了多模态AI系统的系统性安全风险,对全球数十亿智能设备构成潜在威胁。
新加坡国立大学研究团队系统梳理了视觉强化学习领域的最新进展,涵盖超过200项代表性工作。研究将该领域归纳为四大方向:多模态大语言模型、视觉生成、统一模型框架和视觉-语言-动作模型,分析了从RLHF到可验证奖励范式的政策优化策略演进,并识别出样本效率、泛化能力和安全部署等关键挑战,为这一快速发展的交叉学科提供了完整的技术地图。
浙江大学研究团队通过OmniEAR基准测试揭示了当前AI模型在物理世界推理方面的严重缺陷。测试显示,即使最先进的AI在明确指令下能达到85-96%成功率,但面对需要从物理约束推断行动的任务时,成功率骤降至56-85%。研究发现信息过载反而降低AI协作能力,监督学习虽能改善单体任务但对多智能体协作效果甚微,表明当前架构存在根本局限性。
纽约大学和Aimpoint Digital Labs的研究团队首次揭示了Transformer模型训练中"大规模激活"的完整发展轨迹。这些影响力比普通激活大千倍的"超级激活"遵循可预测的数学规律,研究者开发出五参数公式能以98.4%准确率预测其变化。更重要的是,通过调整模型架构参数如注意力密度、宽深比等,可以在训练前就预测和控制这些关键激活的行为,为设计更高效、量化友好的AI模型提供了全新工具。