如果没有神经网络,近年来人工智能取得的一系列突破——包括面部识别与自然语言处理系统等——将根本无法真正实现。
所谓神经网络,指的是能够摄取大量数据并对其内容加以理解的、众多紧密连接的处理单元。然而,此类神经网络的进一步扩展,则在硬件层面面临着严重制约——具体来讲,其对硬件资源的严苛要求意味着相关设备只能以远程方式存在于数据中心之内。
几乎任何设备都能够访问该硬件,数据将被上传至远端服务器,而后接受处理并将结果发送回客户设备处。之所以需要采用这样的方式,是因为神经网络往往需要巨大的电力供应,因此并不适用于智能扬声器或者工业传感器等低功耗智能手机及其它日常处理设备。当然,这种作法的弊端在于数据需要耗费一定时间才能完成由本地设备到云端的传输,这意味着,神经网络在相当一部分特定应用场景当中根本无法实现。
如今,麻省理工学院的研究人员们表示,他们可以使用一种新型芯片来解决这个问题——该芯片能够立足现场执行一切必要的数据处理任务。研究人员们于本周二宣称:“新芯片相较于标准处理器可实现95%的能源效率提升,因此可被集成至小型电池供电设备当中,以进行边缘网络计算。”
为了实现这一种显示的能源效率提升效果,负责领导新芯片开发工作的麻省理工学院电气工程与计算机科学研究生Avishek Biswas利用到了神经网络处理当中的所谓“点积”特性。
Biswas称,“通用型处理器模型是在芯片中的某一部分安置存储器,芯片的另一部分则设有处理器。当需要进行计算操作时,数据需要在二者之间往来移动。”而这种数据往来移动正是令神经网络功耗激增的主要根源。
“不过一种特殊运算确实能够对这些算法的处理过程加以简化,这就是点积运算(dot product)。我们的方法,本质是在思考能否在内存当中实现这种点积能力,从而避免数据的往来移动。”
Biswas和他的同事们构建起一款模拟人类大脑的处理器,其相较于以往设计能够更可靠地实现这一目标。其原型芯片可以同时计算16个点积,且与传统神经网络相比计算精度仅下降2%至3%。
IBM公司人工智能部门副总裁Dario Gil也参与到该项目当中,他表示这一实验结果“必然能够在未来实现在物联网当中使用更复杂的卷积神经网络,从而进行图像与视频内容分类这一重要目标。”
siliconangle.com
作者:MIKE WHEATLEY
编译:科技行者
好文章,需要你的鼓励
Queen's大学研究团队提出结构化智能体软件工程框架SASE,重新定义人机协作模式。该框架将程序员角色从代码编写者转变为AI团队指挥者,建立双向咨询机制和标准化文档系统,解决AI编程中的质量控制难题,为软件工程向智能化协作时代转型提供系统性解决方案。
西北工业大学与中山大学合作开发了首个超声专用AI视觉语言模型EchoVLM,通过收集15家医院20万病例和147万超声图像,采用专家混合架构,实现了比通用AI模型准确率提升10分以上的突破。该系统能自动生成超声报告、进行诊断分析和回答专业问题,为医生提供智能辅助,推动医疗AI向专业化发展。
上海AI实验室团队发现自回归图像生成模型存在局部依赖、语义不一致和空间不变性缺失三大问题,提出ST-AR训练方法。该方法通过掩码注意力、跨步骤对比学习和跨视角对比学习,让AI"先理解再生成"。实验显示,ST-AR将LlamaGen模型的图像理解准确率提升一倍以上,图像生成质量提升42-49%,为构建更智能的多模态AI系统开辟新路径。