“神经病啊 我不要面子啊!”
无意的一句话,既有Diss又不失幽默,发挥的正是语言的魅力。语言是一种迷人的工具,人们利用它彼此交流并分享观点。一般来讲,如果语言清晰准确且运用得当,即可激起交流对象的共鸣。
以往,这类评估通常要求具备训练有素的专业人员以及适当的配合性设施。
言语之间,AI就能诊断精神障碍
他们共同开发出一套人工智能系统,能够以相对精确的方式预测精神病患者的发作机率,同时克服上述客观层面的评估障碍。目前,这套精神病预测AI方案已经被发表在《世界精神病学》杂志上。
该团队立足于2015年IBM的研究发现,并证明利用AI技术模拟判断,后续发展为精神病的高风险潜在患者在语言模式中差异的可能性。更具体地讲,他们利用自然语言处理(简称NLP)技术,分别对“语言贫乏”与“思维跳跃”这两类概念进行量化,从而检查对方在句法复杂性与语义连续性方面的实际表现。
他们的AI成果以一小时为周期,全程追踪在研究人员引导下精神病人的语言表达模式。
在我们的研究当中,我们能够构建起一套预测模型,其手动评分准确率达到80%,但自动化特征提取的准确率则高达100%。”
对于新研究,研究员决定在患者群体当中进行一轮不同于以往的语言表达测试:对刚刚阅读的故事进行复述。Cecchi指出,通过利用提取自2015年研究中得出的知识对这套精神病预测AI进行训练,其能够顺利为患者的语言表达模式建立起回顾性模型。
这套系统能够以83%的准确率对精神病患者的最终发病率作出预测。如果利用其对原有研究内的病患资料进行分析,则其判断准确率也可达到79%。
IBM的研究人员们认为,这套精神病预测AI最终将给精神健康从业者及病患带来巨大帮助。正如Cecchi在2017年的IBM Research研究报告中所指出,传统的患者评估方法往往非常主观。但是,利用AI及机器学习技术作为计算精神病学工具,将能够消除这种主观性,同时提升作出准确评估的机率。
这项新研究只是IBM Research计算精神病学研究工作的一部分。
早在2017年,Cecchi的团队就与艾伯塔大学的研究人员们合作,在IBM Alberta高级研究中心内进行了一项研究。这项工作将神经影像学技术与人工智能相结合,通过分析病患的大脑扫描图来预测精神分裂症的发病可能性。
至于这项新研究,Cecchi认为这可能将成为向更广泛的公众提供精神评估服务的一项重要基础,并终将改善精神病的发病诊断以及治疗成效。
就像Cecchi所述的那样,这套系统最大的好处在于便利——无需专业人员或者精密设备的辅助,只需要将音频样本发送给精神病预测AI,即可完成远程评估。这意味着更为稀缺的诊断资源将被用于那些发病机率更高的潜在精神病患者。
当然,这套研究方案并不限于精神病诊断领域。Cecchi表示“其它病症同样可以采用类似的诊断方法——例如抑郁症。
事实上,IBM的研究人员们已经开始探索计算精神病学的发展潜力,以帮助诊断及治疗其它疾病,包括抑郁症、帕金森病以及阿尔茨海默病,甚至是其它一些慢性疼痛病症。”
这都是AI在医疗中的应用。随着这些先进系统逐步被主流群体所接纳,未来将迎来全新的医疗时代,能够随时随地为任何人提供最佳诊断与治疗服务。
好文章,需要你的鼓励
腾讯ARC实验室推出AudioStory系统,首次实现AI根据复杂指令创作完整长篇音频故事。该系统结合大语言模型的叙事推理能力与音频生成技术,通过交错式推理生成、解耦桥接机制和渐进式训练,能够将复杂指令分解为连续音频场景并保持整体连贯性。在AudioStory-10K基准测试中表现优异,为AI音频创作开辟新方向。
Meta与特拉维夫大学联合研发的VideoJAM技术,通过让AI同时学习外观和运动信息,显著解决了当前视频生成模型中动作不连贯、违反物理定律的核心问题。该技术仅需添加两个线性层就能大幅提升运动质量,在多项测试中超越包括Sora在内的商业模型,为AI视频生成的实用化应用奠定了重要基础。
上海AI实验室发布OmniAlign-V研究,首次系统性解决多模态大语言模型人性化对话问题。该研究创建了包含20万高质量样本的训练数据集和MM-AlignBench评测基准,通过创新的数据生成和质量管控方法,让AI在保持技术能力的同时显著提升人性化交互水平,为AI价值观对齐提供了可行技术路径。
谷歌DeepMind团队开发的GraphCast是一个革命性的AI天气预测模型,能够在不到一分钟内完成10天全球天气预报,准确性超越传统方法90%的指标。该模型采用图神经网络技术,通过学习40年历史数据掌握天气变化规律,在极端天气预测方面表现卓越,能耗仅为传统方法的千分之一,为气象学领域带来了效率和精度的双重突破。