
Google DeepMind 最近在《自然-医学(Nature Medicine)》期刊上发表研究报告显示,它迎来一项里程碑式的医疗成就,它的 AI 在诊断眼疾上与人类医生一样出色。
DeepMind 与伦敦摩尔菲尔茨(Moorfields)眼科医院合作,在今年 2 月开发出能够通过分析 3D 视网膜扫描影像、识别青光眼和糖尿病视网膜病变等主要眼睛疾病的 AI 技术。在 997 名患者的扫描影像上进行的测试中,DeepMind 的算法在转诊推荐的准确度比摩尔菲尔茨眼科医院的 8 名视网膜专科医生表现得更好——DeepMind 算法的错误率为 5.5%,而 8 名人类医生的错误率在 6.7% 到 24.1% 之间;如果向人类医生提供患者的背景信息,人类医生的错误率会降低到 5.5% 到 13.1% 之间,结果与 AI 的水平持平或稍差。
DeepMind称,这套人工智能系统能够以前所未有的准确率快速解读常规临床实践的观察结果,从而向患者推荐治疗方法,水准堪比世界领先医疗专家,且诊断范围涵盖50逾种威胁视力的眼科疾病。“这有望彻底改变我们管理人类各种眼科疾病的方式。”
从长远角度来讲,DeepMind希望这一成果能够帮助医生们快速确定需要紧急医治的患者的优先顺序,以最终提升治疗效果。
更为精简的诊断流程
目前,眼科医疗专业人员利用光学相干断层扫描(optical coherence tomography,简称OCT)帮助诊断眼部状况。这些3D影像能够提供关于眼球体背面的详细信息,但其解读难度极高,且通常需要由经验丰富的专家进行分析与解释。
分析这些扫描影像所需要的时间,再加上医疗卫生专业人员需要面对的影像数量(仅在摩尔菲尔茨眼科医院,每天就需要进行超过1000次相关扫描),往往导致扫描与治疗之间的时间周期出现严重延迟。这意味着,一部分病患可能无法得到必要的紧急处理,而一旦他们出现突发性状况,例如眼底出血,此类延误甚至有可能令患者彻底失明。
DeepMind开发出的这套系统旨在解决这一挑战。其不仅能够在数秒钟之内自动检测到眼部疾病的特征,还可以通过提供是否需要转诊等建议以优先考量急需治疗的患者。这种即时性的分类过程能够大大缩短扫描与治疗之间的时间周期,从而帮助患有糖尿病及年龄相关性黄斑变性的患者避免丧失视力。
具有强大的技术适应性
DeepMind不仅将其视为一种有趣的学术性成果,还希望能够真正利用其进行治疗。因此,DeepMind也在论文当中谈到了人工智能在临床实践中的一大主要障碍,即“黑匣子”问题。对于大多数人工智能系统而言,我们往往很难准确理解其提出建议的具体依据。对于需要了解系统推理的临床医生及患者而言,这显然是种无法接受的情况。换言之,人们不仅需要了解人工智能给出了怎样的结论,更需要知道为什么。
DeepMind的系统采用了一种新颖的方法来解决这个问题,即将两套不同的神经网络结合起来,并在二者之间插入一套可轻松解释的表达机制。
· 第一套神经网络被称为拆分网络(segmentation network),用于分析OCT扫描以提供不同类型的眼组织图谱并发现其中存在的疾病特征,例如出血、病变、不规则积液或者其它病变迹象。通过这套图谱,眼科专业人员将能够深入理解系统的“思考过程”。
· 第二套网络则被称为分类网络(classification network),其负责分析这份图谱,从而为临床医师提供诊断与推荐建议。最重要的是,该网络会以百分比的形式表达建议内容,从而帮助临床医生更准确地评估系统对其分析结论的信心水平。
这一功能至关重要,因为眼科治疗专家一直在为患者决定护理及治疗方式方面发挥着核心作用。因此,确保他们能够认真核查系统建议亦成为人工智能方案在实践中实现全面使用的关键所在。
最重要的是,这项技术还能够对接不同类型的眼部扫描仪,而非单纯支持Moorfields提供的特定设备类型。这看似无关紧要,但却具有深远的意义,意味着该项技术可以较为轻松地应用于世界各地,从而极大增加由此受益的患者的具体数量。此外,这也确保了在医院及其它临床场景随时间推移对自身OCT扫描仪进行升级或更换时,该系统仍能正常发挥作用。
下阶段展望
DeepMind坦言,尽管对目前的进展感到无比自豪,但这项初步研究尚未真正转化为实际产品,并需要在实际应用之前经受严格的临床试验与监管审批。不过他们相信,这套系统将很快改变眼科疾病的诊断、治疗与管理方式。
如果这项技术顺利通过临床试验阶段并进入一般性使用验证期,那么摩尔菲尔茨眼科医院的临床医生们就会免费将其引入多达30家英国医院及社区诊所。这一初步验证周期为五年,且各医院及诊所目前每年为3万名患者提供服务,每天接受的转诊OCT扫描总量超过1000次。因此,在新技术的加持之下,每家诊所都可以借此提高判断准确率并加快诊断速度。
然而,摩尔菲尔茨眼科医院掌握的原始数据集适用于临床使用,但却不适用于机器学习研究。因此,DeepMind在数据集的清洁、规划与标记方面投入了大量资金,最终为全球眼科研究领域构建起最强大的人工智能数据库之一。
这套经过改进的数据库将由摩尔菲尔茨眼科医院方面作为非商用公共资产持有,且已经被医院的研究人员们用于九项独立研究,涵盖多种具体条件——未来还将有更多项目与之对接。摩尔菲尔茨眼科医院也计划利用DeepMind提供的经过训练的人工智能模型进行更多非商业性研究。
【注:DeepMind关于“眼疾”的研究论文下载方式:关注科技行者微信公众号(itechwalker)回复“眼疾”,即可获取。】
好文章,需要你的鼓励
AIM Intelligence联合多所知名大学揭示了音频AI系统的重大安全漏洞,开发出名为WhisperInject的攻击方法。这种攻击能让看似无害的音频指令操控AI生成危险内容,成功率超过86%,完全绕过现有安全机制。研究暴露了多模态AI系统的系统性安全风险,对全球数十亿智能设备构成潜在威胁。
新加坡国立大学研究团队系统梳理了视觉强化学习领域的最新进展,涵盖超过200项代表性工作。研究将该领域归纳为四大方向:多模态大语言模型、视觉生成、统一模型框架和视觉-语言-动作模型,分析了从RLHF到可验证奖励范式的政策优化策略演进,并识别出样本效率、泛化能力和安全部署等关键挑战,为这一快速发展的交叉学科提供了完整的技术地图。
浙江大学研究团队通过OmniEAR基准测试揭示了当前AI模型在物理世界推理方面的严重缺陷。测试显示,即使最先进的AI在明确指令下能达到85-96%成功率,但面对需要从物理约束推断行动的任务时,成功率骤降至56-85%。研究发现信息过载反而降低AI协作能力,监督学习虽能改善单体任务但对多智能体协作效果甚微,表明当前架构存在根本局限性。
纽约大学和Aimpoint Digital Labs的研究团队首次揭示了Transformer模型训练中"大规模激活"的完整发展轨迹。这些影响力比普通激活大千倍的"超级激活"遵循可预测的数学规律,研究者开发出五参数公式能以98.4%准确率预测其变化。更重要的是,通过调整模型架构参数如注意力密度、宽深比等,可以在训练前就预测和控制这些关键激活的行为,为设计更高效、量化友好的AI模型提供了全新工具。