12月24日,中国领先的专注于计算机视觉和视频大数据分析的人工智能企业——银河水滴宣布,近日,银河水滴依托于先进的工业视觉技术成功研发出密封圈光学筛选机,该机可以自动对次品密封圈进行智能检测挑选,已获得首笔订单。
据介绍,密封圈广泛应用于各种行业,特别是在电子仪器仪表、新能源、化工以及高空飞行等高精尖行业中。但由于其原料复杂、生产工艺特殊,密封圈在生产过程中很容易产生毛刺、毛边以及两边缺料等缺陷,此前,在检测环节主要由工人通过眼睛进行识别,不仅检测效率低、容易漏检,而且需要大量人力资源。
银河水滴密封圈光学筛选机通过自动上料振动盘完成震动上料,利用相机获取密封圈不同角度的图片,结合先进的人工智能检测算法完成对密封圈的缺陷检测,可以大幅提高了密封圈的出货良品率。匀速玻璃盘上由光电开关检测来料,并利用气针吹料来分开分开合格和不合格产品。
此外,该筛选机提供了简单易用的人机交互界面,能够提供生产数据报表,包括不良品种类数量、不良品比例等数据。
据了解,银河水滴拥有行业领先的工业视觉技术,在业界率先对一类问题算法取得重大突破,首创反馈神经网络设计理念,不需副样本或只需极少副样本,即可完成一类问题深度学习;并且在目标检测速度、目标分割精度方面大幅领先,可实现跨行业智能工业检测,对于肉眼无法检测到的微小瑕疵或微米级差距,仍能实现毫秒级的实时检测。
目前银河水滴已形成针对表面检测、装配件检测、精准测量、工件定位等工业质量检测环节的完整解决方案,并广泛应用于汽车制造、建材生产、3C制造、纺织等行业,为企业打造智能化、自动化、低成本工业检测解决方案,有效降低了生产成本,提高生产效率和效益,增强企业竞争力,推动中国制造业智能化产业升级,为中国“智造”赋能。
好文章,需要你的鼓励
AIM Intelligence联合多所知名大学揭示了音频AI系统的重大安全漏洞,开发出名为WhisperInject的攻击方法。这种攻击能让看似无害的音频指令操控AI生成危险内容,成功率超过86%,完全绕过现有安全机制。研究暴露了多模态AI系统的系统性安全风险,对全球数十亿智能设备构成潜在威胁。
新加坡国立大学研究团队系统梳理了视觉强化学习领域的最新进展,涵盖超过200项代表性工作。研究将该领域归纳为四大方向:多模态大语言模型、视觉生成、统一模型框架和视觉-语言-动作模型,分析了从RLHF到可验证奖励范式的政策优化策略演进,并识别出样本效率、泛化能力和安全部署等关键挑战,为这一快速发展的交叉学科提供了完整的技术地图。
浙江大学研究团队通过OmniEAR基准测试揭示了当前AI模型在物理世界推理方面的严重缺陷。测试显示,即使最先进的AI在明确指令下能达到85-96%成功率,但面对需要从物理约束推断行动的任务时,成功率骤降至56-85%。研究发现信息过载反而降低AI协作能力,监督学习虽能改善单体任务但对多智能体协作效果甚微,表明当前架构存在根本局限性。
纽约大学和Aimpoint Digital Labs的研究团队首次揭示了Transformer模型训练中"大规模激活"的完整发展轨迹。这些影响力比普通激活大千倍的"超级激活"遵循可预测的数学规律,研究者开发出五参数公式能以98.4%准确率预测其变化。更重要的是,通过调整模型架构参数如注意力密度、宽深比等,可以在训练前就预测和控制这些关键激活的行为,为设计更高效、量化友好的AI模型提供了全新工具。