科技行者 7月10日 北京消息:近日,阿里发布新一代语音合成技术KAN-TTS,大幅提高合成语音与真人发声的相似度,并将语音合成定制成本降低10倍以上。
阿里AI的这项突破,将问世80年的语音合成(TTS)技术推向几可乱真的水平,有望通过图灵测试。
当前业界商用系统的合成语音与原始音频录音的接近程度通常在85%到90%之间,而基于KAN-TTS技术的合成语音可将该数据提高到97%以上。
KAN-TTS由达摩院机器智能实验室自主研发,深度融合了目前主流的端到端TTS技术和传统TTS技术,从多个方面改进了语音合成。
传统语音合成定制需要10小时以上的数据录制和标注,对录音人和录音环境要求很高。从启动定制到最终交付,项目周期长成本高。
阿里利用Multi-Speaker Model与Speaker-aware Advanced Transfer Learning相结合的方法,将语音合成定制成本降低10倍以上,周期压缩3倍以上。也就是说,用1小时有效录音数据和不到两个月制作周期,就能完成一次标准TTS定制。
普通用户定制“AI声音”的门槛更低。只需手机录音十分钟,就能获得与录制声音高度相似的合成语音。阿里AI做到这一点,主要基于自动数据检查、自动标注方法和对海量用户场景的利用。
阿里已经对外提供开箱即用的TTS解决方案,共有通用、客服、童声、英文和方言5个场景的34种高品质声音供选择。
基于新一代技术,阿里还显著提高了设备端离线TTS的效果。这在超低资源设备端的TTS服务中非常有用,比如当人们驾车行驶于信号微弱区域,阿里技术能避免语音导航“掉线”。
好文章,需要你的鼓励
Adobe研究院与UCLA合作开发的Sparse-LaViDa技术通过创新的"稀疏表示"方法,成功将AI图像生成速度提升一倍。该技术巧妙地让AI只处理必要的图像区域,使用特殊"寄存器令牌"管理其余部分,在文本到图像生成、图像编辑和数学推理等任务中实现显著加速,同时完全保持了输出质量。
香港科技大学团队开发出A4-Agent智能系统,无需训练即可让AI理解物品的可操作性。该系统通过"想象-思考-定位"三步法模仿人类认知过程,在多个测试中超越了需要专门训练的传统方法。这项技术为智能机器人发展提供了新思路,使其能够像人类一样举一反三地处理未见过的新物品和任务。
韩国KAIST开发的Vector Prism系统通过多视角观察和统计推理,解决了AI无法理解SVG图形语义结构的难题。该系统能将用户的自然语言描述自动转换为精美的矢量动画,生成的动画文件比传统视频小54倍,在多项评估中超越顶级竞争对手,为数字创意产业带来重大突破。
华为诺亚方舟实验室提出VersatileFFN创新架构,通过模仿人类双重思维模式,设计了宽度和深度两条并行通道,在不增加参数的情况下显著提升大语言模型性能。该方法将单一神经网络分割为虚拟专家并支持循环计算,实现了参数重用和自适应计算分配,为解决AI模型内存成本高、部署难的问题提供了全新思路。