科技行者 5月18日 北京消息:大家应该都很清楚,塑料垃圾对于海洋生物一直是种可怕的威胁,然而目前为止,我们依然很难检测到海洋中的塑料污染状况。
塑料制品往往色彩多样,不同尺寸,不同类型,大多数由多种化学物质制成,更糟糕的是,地球上的海洋区域广阔无垠,每年新增的数百万吨塑料很快就会四散蔓延,这种“大塑料”会逐渐分解成细小的塑料块,难以循迹,给海洋生物造成致命威胁。
而只有确定海洋区域内哪些位置的塑料制品最多,才能制定出有针对性的清洁与污染预防举措。
根据近期《自然通讯(Scientific Reports)》期刊上发表的最新研究结果显示,以机器学习为基础的气象卫星,可以搞定海洋环境塑料污染的追踪任务。
英国普利茅斯海洋实验室的一支科学家小组就此进行测试,利用经过训练的机器学习算法分析由欧洲航天局运行的两颗卫星发回的数据,从而找出与塑料垃圾相关的蛛丝马迹。
▲ 图:气象卫星的主责,本是立足环地球轨道,观察威力强大的雷暴与龙卷风。图片来源/美国航空航天局(NASA)
本次研究中使用的两颗Sentinel-2卫星,均配备有12波段多光谱仪(MSI)传感器,能够以10米为基本像素单位,收集海面上的高分辨率图像。在两颗卫星的协同努力下,系统每隔2-5天,即可从世界各地的沿海区域内重复收集数据。换句话说,这套系统每个月能够对地球上所有邻海位置进行6-15次全景图像收集——这可是一大批数据!
卫星会收集包括光信号在内的多种数据类型,并根据对象反射的光信号波长,区分目标的具体材质。从原理层面来看,清澈的海水能够高效吸收近红外(NIR)到短波红外(SWIR)光谱范围内的光波,而塑料及天然碎屑等漂浮物则会大量反射近红外光波。这种光吸收水平层面的差异,也让卫星在理论上获得了检测海面漂浮物的能力。
不同漂浮物的近红外信号也有所区别。研究人员利用卫星数据,训练出一种机器学习算法,成功地从卫星捕捉到的光信号数据中,识别出漂浮塑料的光信号,进而发现了希腊海岸周边存在的塑料漂浮区。研究人员们还利用这类光数据,教会了算法将某些近红外光信号与漂浮的塑料碎片关联起来。同样的,算法也逐步学会了如何区分塑料与天然物质(例如海藻,浮木,以及泡沫塑料等)。
▲ 图:卫星每2-5天对世界范围内各沿海地区进行重复拍摄,借此收集大量可用于跟踪海洋内塑料污染状况的数据。
在算法开始运行之后,研究人员开始利用来自全球四大沿海水域的卫星数据进行测试,分别为:阿克拉(加纳)、圣克安群岛(加拿大)、达南(越南)以及苏格兰(英国)。总体而言,该算法能够以86%的准确度识别出塑料污染,该算法在分析圣胡安群岛的数据时带来了100%准确度。
此外,该算法还能根据卫星数据,定位尺寸≥5毫米的塑料碎片,正是这类“大塑料” 逐渐分解成细小的塑料块,给海洋生物造成了致命威胁。上述结果也表明,将卫星数据与机器学习算法结合,确实能帮助人类跟踪并清理全球塑料污染难题。
好文章,需要你的鼓励
AIM Intelligence联合多所知名大学揭示了音频AI系统的重大安全漏洞,开发出名为WhisperInject的攻击方法。这种攻击能让看似无害的音频指令操控AI生成危险内容,成功率超过86%,完全绕过现有安全机制。研究暴露了多模态AI系统的系统性安全风险,对全球数十亿智能设备构成潜在威胁。
新加坡国立大学研究团队系统梳理了视觉强化学习领域的最新进展,涵盖超过200项代表性工作。研究将该领域归纳为四大方向:多模态大语言模型、视觉生成、统一模型框架和视觉-语言-动作模型,分析了从RLHF到可验证奖励范式的政策优化策略演进,并识别出样本效率、泛化能力和安全部署等关键挑战,为这一快速发展的交叉学科提供了完整的技术地图。
浙江大学研究团队通过OmniEAR基准测试揭示了当前AI模型在物理世界推理方面的严重缺陷。测试显示,即使最先进的AI在明确指令下能达到85-96%成功率,但面对需要从物理约束推断行动的任务时,成功率骤降至56-85%。研究发现信息过载反而降低AI协作能力,监督学习虽能改善单体任务但对多智能体协作效果甚微,表明当前架构存在根本局限性。
纽约大学和Aimpoint Digital Labs的研究团队首次揭示了Transformer模型训练中"大规模激活"的完整发展轨迹。这些影响力比普通激活大千倍的"超级激活"遵循可预测的数学规律,研究者开发出五参数公式能以98.4%准确率预测其变化。更重要的是,通过调整模型架构参数如注意力密度、宽深比等,可以在训练前就预测和控制这些关键激活的行为,为设计更高效、量化友好的AI模型提供了全新工具。