产业智能化快速深入推进,人工智能基础设施的建设不可或缺。5月20日,由深度学习技术及应用国家工程实验室与百度联合主办的“Wave Summit 2020”深度学习开发者峰会在线上召开。百度CTO王海峰在致辞中表示,时代契机为飞桨的发展提供了最好的机遇,作为中国首个开源开放、功能完备的产业级深度学习平台,飞桨将与产业紧密融合,与开发者并肩前行。
王海峰公布了飞桨一连串的喜人数据:累计开发者数量194万,服务企业数量8.4万家,基于飞桨平台产生了23.3万模型,覆盖通信、电力、城市管理、民生、工业、农业、林业、公益等众多行业和领域。疫情期间,飞桨和开发者一起战斗,推出了口罩检测和人脸识别、社区疫情防控系统、疫情问答机器人、基于CT影像的肺炎筛查等等一系列产品和服务,依托飞桨平台和生态为疫情防控贡献科技力量。
王海峰认为,这些由开发者和飞桨共同努力创造的成果,得益于技术的成熟、平台的强大和生态的欣欣向荣,也跟社会的需求和时代的契机密切相关。
首先,算法、算力及数据的持续共同进步,使得技术的边界不断被拓展。飞桨深度学习平台高速发展,易用性不断提升,模型库日益丰富,工具组件愈发完备,部署更加便捷。进而,围绕深度学习平台的技术和产业生态日渐繁荣,推动人工智能进入工业大生产阶段,加速各行各业智能化升级,并不断催生新的应用、新的产业。
另一方面,疫情带来线上经济增长。远程办公、云课堂等复工复产新模式,公共安全、应急管理、城市治理等国计民生相关产业迫在眉睫的智能化需求,以及澎湃而来的新基建大潮,为技术创新创造了良好的机遇。以飞桨为代表的深度学习平台是新型基础设施的重要一环,与云计算、5G、物联网、数据中心等互相融合促进,加速产业智能化进程。
时代契机下,飞桨聚焦于满足旺盛的产业智能化需求和快速增长的AI生产规模,全新升级,包含飞桨开源深度学习平台和飞桨企业版。飞桨开源深度学习平台包括核心框架、基础模型库、端到端开发套件与工具组件,将始终保持开源,不断提升核心能力,为产业、学术、科研创新提供基础支撑。同时,随着企业应用的需求越来越丰富和强烈,首次推出飞桨企业版,助力各个企业拥有自己的AI中台,加速企业智能化升级的进程。
满足AI工业大生产需求之外,飞桨作为技术领先的深度学习平台,积极布局前瞻技术方向,发布量子机器学习,这使得它成为国内首个支持量子机器学习的深度学习平台。
在刚刚举办的ABC Summit 2020百度夏季云智峰会上,百度智能云“以云计算为基础,以人工智能为抓手,聚焦重要赛道”的新战略首次亮相。百度智能云融合了云计算、大数据、百度大脑等百度的核心技术,把人工智能输送到千行万业,促进各行各业的智能化升级,成为加速AI工业化大生产的关键力量,而飞桨则是其中的核心基础底座。
正如王海峰所说,“在产业智能化浪潮兴起、人工智能基础设施建设快速推进之际,飞桨以更敏捷的脚步,秉承开源开放理念,坚持技术创新,与开发者共同成长和进步,一起发展深度学习和人工智能技术及产业生态,加速产业智能化进程。”
好文章,需要你的鼓励
AIM Intelligence联合多所知名大学揭示了音频AI系统的重大安全漏洞,开发出名为WhisperInject的攻击方法。这种攻击能让看似无害的音频指令操控AI生成危险内容,成功率超过86%,完全绕过现有安全机制。研究暴露了多模态AI系统的系统性安全风险,对全球数十亿智能设备构成潜在威胁。
新加坡国立大学研究团队系统梳理了视觉强化学习领域的最新进展,涵盖超过200项代表性工作。研究将该领域归纳为四大方向:多模态大语言模型、视觉生成、统一模型框架和视觉-语言-动作模型,分析了从RLHF到可验证奖励范式的政策优化策略演进,并识别出样本效率、泛化能力和安全部署等关键挑战,为这一快速发展的交叉学科提供了完整的技术地图。
浙江大学研究团队通过OmniEAR基准测试揭示了当前AI模型在物理世界推理方面的严重缺陷。测试显示,即使最先进的AI在明确指令下能达到85-96%成功率,但面对需要从物理约束推断行动的任务时,成功率骤降至56-85%。研究发现信息过载反而降低AI协作能力,监督学习虽能改善单体任务但对多智能体协作效果甚微,表明当前架构存在根本局限性。
纽约大学和Aimpoint Digital Labs的研究团队首次揭示了Transformer模型训练中"大规模激活"的完整发展轨迹。这些影响力比普通激活大千倍的"超级激活"遵循可预测的数学规律,研究者开发出五参数公式能以98.4%准确率预测其变化。更重要的是,通过调整模型架构参数如注意力密度、宽深比等,可以在训练前就预测和控制这些关键激活的行为,为设计更高效、量化友好的AI模型提供了全新工具。