深度学习属于人工智能的一种,在医疗领域,它可以准确地利用CT扫描图像找到大脑供血动脉的阻塞,由于这种阻塞导致的中风占比很大,所以深度学习的使用,将有助于帮医生更快地诊断和治疗中风患者。
研究人员的目标是尽最大可能减少确诊时间,因为尽早治疗这种阻塞至关重要。
该研究项目负责人Matthew Stib是位于罗得岛州首府普罗维登斯的布朗大学沃伦·阿尔伯特医学院放射科的住院医生。他表示:“对于这种对时间非常敏感的诊断而言,几分钟都很重要。我们在(治疗)时间上减少一分钟都会令患者的无残障寿命延长一周。”
CT血管造影扫描是检测这些阻塞的标准方法,几分钟内就可以完成。但通常,只有那些经过训练的放射科医生才能识别出现的阻塞,而在医院繁忙或没有常驻专家的情况下,宝贵的时间可能就流失了。
为了减少治疗这些患者的时间,Stib及其同事与布朗大学的计算机科学系合作开发了一种开源深度学习算法系统,可以评估CT图像及识别大的血管阻塞。
研究人员首先用拍摄的疑似中风患者的数百张CT图像对系统进行训练,然后再做包含62位患者在内的测试模拟,目的是看这个系统是否可以正确识别出患有动脉阻塞的患者。
▲笔尖指处显示CT血管造影图里的冠状动脉形状(图:Getty)
据了解,他们还同时用了单相和多相CT血管造影技术,以确定哪种技术与深度学习系统的结合可以提供更好的效果。多相CT血管造影可在扫描过程的多个时间点上拍摄图像,因此与单相CT血管造影比能提供更详细的图像,单相CT血管造影则只取一个时间点。
上述的深度学习系统在分析单相图像时识别大血管阻塞时的精度仅为中等。但使用多相图像时,精度则会显着提高,可以100%地成功识别出阻塞,尽管也错误地将阴性对照组中的几个人(31位患者中的7位)归为有阻塞类。
Stib表示,“这些结果非常不错。我们其实就是想优化模型的敏感性,确保我们能够找到每一个阳性患者,因为漏掉一个会有非常可怕的后果。”他指出,深度学习之前也被用来评估CT血管造影图像,但用深度学习系统评估多相CT图像却是首次。据他所知,此次用到的算法也是首次开源,这意味着,其他研究人员也可以根据需要使用和开发这个系统。
未来,研究团队计划进一步验证该系统,他们将在自己的医院进行测试,目的是要看这个系统在紧急情况并且有较大数量患者群体时使用能否达到同样精度。如果系统的精度可以保持就可以将这个系统推广到其他医院和诊所,进而帮助快速诊断疑似中风的患者。
Stib解释说:“该算法并不能取代放射科医生的功能,而只是试图加快诊断时间……如果放射科医生不在周围或者工作流量太大,患者的检查结果无法及时处理,这时就会出现警报提示可能存在的阻塞,应该有人跟进。”他表示,“我认为未来的放射科医生需要接受这项新技术,要认识这项新技术在提高效率和准确性方面的潜在附加价值。”
好文章,需要你的鼓励
新加坡国立大学研究团队开发了SPIRAL框架,通过让AI与自己对弈零和游戏来提升推理能力。实验显示,仅训练AI玩简单扑克游戏就能让其数学推理能力提升8.6%,通用推理提升8.4%,且无需任何数学题目作为训练材料。研究发现游戏中的三种推理模式能成功转移到数学解题中,为AI训练提供了新思路。
同济大学团队开发的GIGA-ToF技术通过融合多帧图像的"图结构"信息,创新性地解决了3D相机噪声问题。该技术利用图像间的不变几何关系,结合深度学习和数学优化方法,在合成数据集上实现37.9%的精度提升,并在真实设备上展现出色泛化能力,为机器人、AR和自动驾驶等领域提供更可靠的3D视觉解决方案。
伊利诺伊大学研究团队通过对比实验发现,经过强化学习训练的视觉语言模型虽然表现出"顿悟时刻"现象,但这些自我纠错行为并不能实际提升推理准确率。研究揭示了AI模型存在"生成-验证差距",即生成答案的能力强于验证答案质量的能力,且模型在自我验证时无法有效利用视觉信息,为AI多模态推理发展提供了重要启示。
MIT等顶尖机构联合提出SparseLoRA技术,通过动态稀疏性实现大语言模型训练加速1.6倍,计算成本降低2.2倍。该方法使用SVD稀疏性估计器智能选择重要计算部分,在保持模型性能的同时显著提升训练效率,已在多个任务上验证有效性。