深度学习属于人工智能的一种,在医疗领域,它可以准确地利用CT扫描图像找到大脑供血动脉的阻塞,由于这种阻塞导致的中风占比很大,所以深度学习的使用,将有助于帮医生更快地诊断和治疗中风患者。
研究人员的目标是尽最大可能减少确诊时间,因为尽早治疗这种阻塞至关重要。
该研究项目负责人Matthew Stib是位于罗得岛州首府普罗维登斯的布朗大学沃伦·阿尔伯特医学院放射科的住院医生。他表示:“对于这种对时间非常敏感的诊断而言,几分钟都很重要。我们在(治疗)时间上减少一分钟都会令患者的无残障寿命延长一周。”
CT血管造影扫描是检测这些阻塞的标准方法,几分钟内就可以完成。但通常,只有那些经过训练的放射科医生才能识别出现的阻塞,而在医院繁忙或没有常驻专家的情况下,宝贵的时间可能就流失了。
为了减少治疗这些患者的时间,Stib及其同事与布朗大学的计算机科学系合作开发了一种开源深度学习算法系统,可以评估CT图像及识别大的血管阻塞。
研究人员首先用拍摄的疑似中风患者的数百张CT图像对系统进行训练,然后再做包含62位患者在内的测试模拟,目的是看这个系统是否可以正确识别出患有动脉阻塞的患者。
▲笔尖指处显示CT血管造影图里的冠状动脉形状(图:Getty)
据了解,他们还同时用了单相和多相CT血管造影技术,以确定哪种技术与深度学习系统的结合可以提供更好的效果。多相CT血管造影可在扫描过程的多个时间点上拍摄图像,因此与单相CT血管造影比能提供更详细的图像,单相CT血管造影则只取一个时间点。
上述的深度学习系统在分析单相图像时识别大血管阻塞时的精度仅为中等。但使用多相图像时,精度则会显着提高,可以100%地成功识别出阻塞,尽管也错误地将阴性对照组中的几个人(31位患者中的7位)归为有阻塞类。
Stib表示,“这些结果非常不错。我们其实就是想优化模型的敏感性,确保我们能够找到每一个阳性患者,因为漏掉一个会有非常可怕的后果。”他指出,深度学习之前也被用来评估CT血管造影图像,但用深度学习系统评估多相CT图像却是首次。据他所知,此次用到的算法也是首次开源,这意味着,其他研究人员也可以根据需要使用和开发这个系统。
未来,研究团队计划进一步验证该系统,他们将在自己的医院进行测试,目的是要看这个系统在紧急情况并且有较大数量患者群体时使用能否达到同样精度。如果系统的精度可以保持就可以将这个系统推广到其他医院和诊所,进而帮助快速诊断疑似中风的患者。
Stib解释说:“该算法并不能取代放射科医生的功能,而只是试图加快诊断时间……如果放射科医生不在周围或者工作流量太大,患者的检查结果无法及时处理,这时就会出现警报提示可能存在的阻塞,应该有人跟进。”他表示,“我认为未来的放射科医生需要接受这项新技术,要认识这项新技术在提高效率和准确性方面的潜在附加价值。”
好文章,需要你的鼓励
腾讯ARC实验室推出AudioStory系统,首次实现AI根据复杂指令创作完整长篇音频故事。该系统结合大语言模型的叙事推理能力与音频生成技术,通过交错式推理生成、解耦桥接机制和渐进式训练,能够将复杂指令分解为连续音频场景并保持整体连贯性。在AudioStory-10K基准测试中表现优异,为AI音频创作开辟新方向。
Meta与特拉维夫大学联合研发的VideoJAM技术,通过让AI同时学习外观和运动信息,显著解决了当前视频生成模型中动作不连贯、违反物理定律的核心问题。该技术仅需添加两个线性层就能大幅提升运动质量,在多项测试中超越包括Sora在内的商业模型,为AI视频生成的实用化应用奠定了重要基础。
上海AI实验室发布OmniAlign-V研究,首次系统性解决多模态大语言模型人性化对话问题。该研究创建了包含20万高质量样本的训练数据集和MM-AlignBench评测基准,通过创新的数据生成和质量管控方法,让AI在保持技术能力的同时显著提升人性化交互水平,为AI价值观对齐提供了可行技术路径。
谷歌DeepMind团队开发的GraphCast是一个革命性的AI天气预测模型,能够在不到一分钟内完成10天全球天气预报,准确性超越传统方法90%的指标。该模型采用图神经网络技术,通过学习40年历史数据掌握天气变化规律,在极端天气预测方面表现卓越,能耗仅为传统方法的千分之一,为气象学领域带来了效率和精度的双重突破。