科学家已经习惯于使用超级计算机处理宇宙学领域的海量数据,最近卡耐基梅隆大学的研究团队找到一种新方法,可以使用常规的机器学习技术(与AI绘画或作曲拥有同样的底层设计),在图形处理单元(GPU)上实现高级模拟能力。
这个名为“无人在此”(This Person Does Not Exist)的研究项目,尝试使用大家熟知的硬件与神经网络技术以高分辨率形式模拟我们的现实宇宙。这项极具前瞻性的研究,也许会彻底改变我们认识宇宙与理解物理定律的方式。
根据研究小组的说法,使用传统方法在单一处理核心上运行宇宙学模拟大约需要23天。因此,研究人员倾向于使用超级计算机完成此类仿真任务。之所以如此困难,是因为物理学中仍充斥着种种悬而未决的根本问题。我们找不到一套能够解释整个宇宙的统一规则,科学家们也不清楚如何将经典物理学定律同量子领域中观察到的现象联系起来。
为此,我们必须努力探索。在涉及到预测宇宙中暗物质数量等难题时,科学家必须尝试不同的预设数值。只有这样反复试错,才能最终得出更接近真实情况的结果。科学家们开始着手模拟,并将发现与太空望远镜及其他观测结果数据源进行核对,之后再模拟、再核对,如此反复。
问题所在
超级计算机的运行成功率极高,租用一个小时往往就要花掉数千美元。与单一GPU的低功耗水平相比,超级计算机简直就像是个熊熊燃烧的大火炉。
所以对于这类需要反复试验的问题,超级计算机显然不是最好的解决方案。
路在何方
研究人员将问题归结为:目前,我们可以先对宇宙中的小块图像进行高分辨率模拟,并在大型模拟区域内转为低分辨率图像模拟。至于大型区域的高分辨率图像处理必须慎而又慎,因为这会耗费掉大量时间、精力与能源。
但这样的现状,相当于在模拟整个宇宙时设下一道不可逾越的鸿沟。贯通天堑的桥梁,就是AI。
卡耐基梅隆大学团队选择的方案并非教导AI以程序化方式模拟整个宇宙(这仍然可能设定无穷多个变量),而是直接以高分辨率形式进行图像模拟。
这大大提升了模拟效率。具体提升了多少?卡耐基梅隆大学的Jocelyn Duffy表示:经过训练的代码能够获取完整的低分辨率模型并执行超高分辨率模拟,将其中包含的粒子数量扩展达512倍。对于宇宙当中直径约5亿光年、包含1.34亿个粒子的区域,原有方法需要560个小时才能在单一处理核心上完成高分辨率模拟;而使用新方法后,研究人员仅仅需要36分钟。在向模拟流程中添加更多粒子后,效果变得更为显著。对于包含1340亿个粒子的“千亿”(相较于上一用例)宇宙,研究人员的新方法在单一图形处理单元中只需要16个小时即可处理完成。如果使用原有方法,这种大小及分辨率的模拟必须配合专用的超级计算机,处理时长也将达到数月之久。
这不是说AI真能“理解”我们所无法企及的宇宙空间。相反,它只是在以令人信服的方式将低分辨率模拟图像扩充为高分辨率形式,帮助科学家以更少的时间、精力与能源投入获得可靠的模拟结果。
从本质上讲,这就像是为AI提供电影的分镜草稿,再由它输出实拍影片的具体样貌。虽然还不够完善,但已经可以在一定的保真水平下省去真实拍摄的麻烦。
实际过程当然要比本文的描述复杂得多。但好在模拟出的宇宙图像比较容易验证,我们可以直接把结果跟观测数据进行比较。唯一的谜团,是我们并不知道AI模型是如何完成填充的。
这项最新成果,让宇宙学模拟从超级计算机的专利变成了完全可以运行在游戏PC上的“小case”,研究人员也可以借此快速测试自己的灵感、推动模拟能力的大众化转型。
从乐观的角度来说,这项研究有望彻底改变我们对现实宇宙的观察方式。如果运气好,我们也许能更好地对暗物质、引力效应甚至是宇宙起源作出原理性解释。
好文章,需要你的鼓励
这项研究利用大语言模型解决科学新颖性检测难题,南洋理工大学团队创新性地构建了闭合领域数据集并提出知识蒸馏框架,训练轻量级检索器捕捉想法层面相似性而非表面文本相似性。实验表明,该方法在市场营销和NLP领域显著优于现有技术,为加速科学创新提供了有力工具。
un?CLIP是一项创新研究,通过巧妙反转unCLIP生成模型来增强CLIP的视觉细节捕捉能力。中国科学院研究团队发现,虽然CLIP在全局图像理解方面表现出色,但在捕捉细节时存在不足。他们的方法利用unCLIP生成模型的视觉细节表示能力,同时保持与CLIP原始文本编码器的语义对齐。实验结果表明,un?CLIP在MMVP-VLM基准、开放词汇语义分割和视觉中心的多模态任务上显著优于原始CLIP和现有改进方法,为视觉-语言模型的发展提供了新思路。
这项研究介绍了RPEval,一个专为评估大语言模型角色扮演能力而设计的新基准。研究团队从法国里尔大学开发的这一工具专注于四个关键维度:情感理解、决策制定、道德对齐和角色一致性,通过单轮交互实现全自动评估。研究结果显示Gemini-1.5-Pro在总体表现上领先,而GPT-4o虽在决策方面表现出色,但在角色一致性上存在明显不足。这一基准为研究人员提供了一个可靠、可重复的方法来评估和改进大语言模型的角色扮演能力。
这篇论文介绍了LegalSearchLM,一种创新的法律案例检索方法,将检索任务重新定义为法律要素生成。研究团队构建了LEGAR BENCH数据集,涵盖411种犯罪类型和120万案例,并开发了能直接生成关键法律要素的检索模型。实验表明,该模型在准确率上超越传统方法6-20%,且在未见犯罪类型上展现出强大泛化能力。这一突破为法律专业人士提供了更高效、精准的案例检索工具。