5月20日,阿里巴巴副总裁、阿里云计算平台负责人贾扬清在媒体沟通会上表示,数字经济迅猛发展,不断丰富、增长的数智业务,对技术提出了更高的挑战,企业的数字化创新需要用好“大数据+AI”这个“核武器”。
经过近20年的发展,大数据已从早期的数据挖掘进化为承载数据分析、数据管理、数据协同的综合治理平台。阿里巴巴在数据治理方面拥有丰富的经验,无论是简单、易用、弹性的云数据仓库MaxCompute,还是提供一站式数据开发、管理、治理的平台DataWorks,都能成为企业数字化的“好帮手”。
建筑行业领头羊——中建三局一公司,就基于阿里云的DataWorks和MaxCompute构建了数智建造一站式服务平台。该平台覆盖了建造领域生产场景全链路、核心管控全流程和智能决策全视角,使建造类企业实时感知、动态控制和智能化决策成为现实。
中建三局只是建筑行业的一个缩影。事实上,大数据技术早已经广泛应用到各行各业的数字化转型中。
中建三局数智建造一站式服务平台
金融行业,天弘基金每天有百亿级数据量实时在线交易,采用阿里云飞天大数据平台,使数据清算时长从8小时缩至1.5小时;在线教育行业,VIPKID在阿里云大数据技术的辅助下,实现了60%的问题自动化处理,投诉率降低66%;快狗打车基于阿里云,实现了经纬度数据实时决策,15秒及时响应,3分钟车到位,货车空驶率降低30%……
对企业来说,业务要创新提高效率,仅仅把数据管的好、用的好,还不够,还需要AI技术的加持。“大数据和AI密不可分,结合在一起,更能帮助企业在数字时代从容应对不确定性。”贾扬清表示。
随着数据量越来越大,模型变得越来越精准、高效且复杂。因此,无论是在数据还是计算方面,都需要有一个更加大规模、大体量的底座,来支撑上层AI的需求。
为此,阿里云机器学习平台PAI构建了灵活、易用和功能丰富的机器学习全栈产品:PAI-Studio(可视化建模平台)、PAI-DSW(云原生交互式建模平台)、PAI-DLC(云原生AI基础平台)、PAI-EAS(云原生弹性推理服务平台)。
对企业来说,工程化已经超越算法,成为AI落地的更大瓶颈。日前,阿里巴巴与清华大学合作发布了超大规模中文多模态预训练千亿参数模型M6。该模型的数据集包含超过1.9 TB图像和292GB文本,参数规模达到1000亿,可完成产品描述生成、视觉问答、问答、中国诗歌生成等跨模态任务。
目前,M6已经用于业务场景里。在犀牛新制造的服装设计上,M6可以根据潮流趋势文本的描述,自动产出细节清晰的服装图,并符合生产标准。
我们希望将M6的场景化服务能力开放给所有企业。”贾扬清表示。
要把AI转化为生产力,不仅要懂 AI、还更要懂行业。阿里云机器学习平台PAI以电商、金融、游戏、直播等业务为起点,在智能推荐、用户增长、金融风控、音视频文本等多模态场景积累了丰富的实战经验,沉淀了大量成熟算法、框架及工程化组件等“原子能力”,帮助开发者及企业客户更快地孵化和构建新场景业务。
好文章,需要你的鼓励
AIM Intelligence联合多所知名大学揭示了音频AI系统的重大安全漏洞,开发出名为WhisperInject的攻击方法。这种攻击能让看似无害的音频指令操控AI生成危险内容,成功率超过86%,完全绕过现有安全机制。研究暴露了多模态AI系统的系统性安全风险,对全球数十亿智能设备构成潜在威胁。
新加坡国立大学研究团队系统梳理了视觉强化学习领域的最新进展,涵盖超过200项代表性工作。研究将该领域归纳为四大方向:多模态大语言模型、视觉生成、统一模型框架和视觉-语言-动作模型,分析了从RLHF到可验证奖励范式的政策优化策略演进,并识别出样本效率、泛化能力和安全部署等关键挑战,为这一快速发展的交叉学科提供了完整的技术地图。
浙江大学研究团队通过OmniEAR基准测试揭示了当前AI模型在物理世界推理方面的严重缺陷。测试显示,即使最先进的AI在明确指令下能达到85-96%成功率,但面对需要从物理约束推断行动的任务时,成功率骤降至56-85%。研究发现信息过载反而降低AI协作能力,监督学习虽能改善单体任务但对多智能体协作效果甚微,表明当前架构存在根本局限性。
纽约大学和Aimpoint Digital Labs的研究团队首次揭示了Transformer模型训练中"大规模激活"的完整发展轨迹。这些影响力比普通激活大千倍的"超级激活"遵循可预测的数学规律,研究者开发出五参数公式能以98.4%准确率预测其变化。更重要的是,通过调整模型架构参数如注意力密度、宽深比等,可以在训练前就预测和控制这些关键激活的行为,为设计更高效、量化友好的AI模型提供了全新工具。