
教育焦虑已经成了全民话题。去年以来,从舆论导向到配套政策,似乎也在回应这个问题。其中一个手段是「分流」,也就是在社会关注度最高的高考之前,把学生分流到不同的教育层次。
这种措施已经实打实地在进行了,比如高考虽然关注度高,但它不是难度最大的考试,因为它的录取率有75%,而高中的录取率在未来会保持或迈向50%。
这种「分流」能解决教育焦虑吗?我们先来做两个假设。
第一个假设关于“桃子”。假设有三个人,都喜欢吃桃子,但是只有4个桃子,每人分不到2个。如果分桃子的人说,让我们来减少一半的桃子至2个,功劳少的两个人可以选择退出,剩下的一个人就可以拿到2个桃子了。
第二个假设关于“苹果”。假设有三个人,都喜欢金苹果。但是只有2个金苹果,不能保证每人1个。分苹果的人说,让我们减少1个金苹果,不够漂亮的两个人可以退出,剩下的那个最美的人就可以保证拿到金苹果了。
两个假设中,分别的三个人,是否会有人在减少了桃子和苹果的情况下,主动选择退出,让剩下的人轻松拿到奖励,避免三个人的共同焦虑?
这两个假设,其实有现成的答案。
第一个假设,如果发生在春秋战国,结局会变成三个人都自刎而亡。这就是著名的“二桃杀三士”的故事。
第二个假设,如果发生在希腊神话里,结局将会是引发一场战争,那就是“特洛伊之战”。
回到教育焦虑这件事儿。
其实这和分桃子、金苹果的故事很像。家长们非常重视子女教育,但是优秀的大学名额是有限的,造成了激烈的竞争。
而高考前的「分流」,从高中阶段减少入学名额,提高中考难度,就相当于减少奖励比例,让有些人知难而退,从而降低高层次竞争难度。
但是桃子和苹果的故事告诉我们,减少供给,并不会减少焦虑,反而会让竞争变得更加惨烈。
因为教育从来不是教育问题,而是一个相对公平的,提供阶层跃升,或者阶层更新的竞争系统。
这就好比,要解决高房价,暂停土地拍卖和叫停房地产融资,也不可能让房价下降,只有提供更多低成本的土地才可以。
只有增加供给,才能让竞争者的心态更平和,焦虑更少。
减少优质资源供给,或者设定前置分流系统,只会让焦虑更加严重,或者让焦虑换一种方式存在。
好文章,需要你的鼓励
谷歌DeepMind等顶级机构联合研究揭示,当前12种主流AI安全防护系统在面对专业自适应攻击时几乎全部失效,成功率超过90%。研究团队通过强化学习、搜索算法和人类红队攻击等多种方法,系统性地突破了包括提示工程、对抗训练、输入过滤和秘密检测在内的各类防护技术,暴露了AI安全评估的根本缺陷。
西蒙弗雷泽大学和Adobe研究院联合开发的MultiCOIN技术,能够将两张静态图片转换为高质量的过渡视频。该技术支持轨迹、深度、文本和区域四种控制方式,可单独或组合使用。采用双分支架构和分阶段训练策略,在运动控制精度上比现有技术提升53%以上,为视频制作提供了前所未有的灵活性和精确度。
英国国王学院研究团队开发了潜在精炼解码(LRD)技术,解决了AI文本生成中的速度与准确性平衡难题。该方法通过两阶段设计模仿人类思考过程:先让AI在连续空间中"深思熟虑",保持多种可能性的混合状态,然后"果断行动",逐步确定答案。实验显示,LRD在编程和数学推理任务中准确性提升最高6.3个百分点,生成速度提升最高10.6倍,为AI并行文本生成开辟了新路径。
清华大学团队开发的ViSurf是一种创新的大型视觉语言模型训练方法,巧妙融合了督导式学习和强化学习的优势。该方法通过将标准答案整合到强化学习过程中,让AI既能从正确答案中学习又能保持自主推理能力。实验显示ViSurf在多个视觉任务上显著超越传统方法,特别是在处理模型知识盲区时表现突出,同时有效避免了灾难性遗忘问题,为AI训练提供了更高效稳定的新范式。