
。
如果能把这些陈旧芯片,代工设施升级为新的可用产能,会不会成为攻克芯片短缺难题的关键?没准有戏。
产能与需求的再平衡
”
多年驻扎AI芯片设计领域的厂商Synopsys公司正在跃跃欲试。
芯片重制
Synopsys将这项计划命名为「芯片重制」,基本思路是:使用AI算法,自动针对不同节点重新设计芯片,把以往需要数月甚至数年的工作,压缩到短短几周,进而帮助客户节约下数亿美元研发成本。
”
工程师们可以利用新的音频技术处理旧录音,进而创造出音质更高的全新版本。此外,他们还能够添加新的音轨,例如背景乐,由此二次制作出新产品。整个过程的成本,只相当于重新录制的一小部分。太阳马戏团的《Love》配乐就是个典型案例,而同样的思路,也完全可以在芯片领域发挥作用。只需要引入新的制程节点,我们就能在旧的设施中解锁新产能,并做出进一步优化。
。更重要的是,整个重制流程只需要几个礼拜外加一名工程师,这就告别了以往动辄长达数月、要求一组设计师团队参与的复杂规划。这种便捷的升级方法,应该能够吸引英特尔等厂商将旧有芯片生产线转化至Intel 16等中端产能。
图:芯片重制,将陈旧设备升级为新的工艺节点,并用AI技术降低芯片功耗、提高芯片主频。
海外来电是科技行者旗下编译团队,聚焦海外新技术、新观点、新风向。
好文章,需要你的鼓励
谷歌DeepMind等顶级机构联合研究揭示,当前12种主流AI安全防护系统在面对专业自适应攻击时几乎全部失效,成功率超过90%。研究团队通过强化学习、搜索算法和人类红队攻击等多种方法,系统性地突破了包括提示工程、对抗训练、输入过滤和秘密检测在内的各类防护技术,暴露了AI安全评估的根本缺陷。
西蒙弗雷泽大学和Adobe研究院联合开发的MultiCOIN技术,能够将两张静态图片转换为高质量的过渡视频。该技术支持轨迹、深度、文本和区域四种控制方式,可单独或组合使用。采用双分支架构和分阶段训练策略,在运动控制精度上比现有技术提升53%以上,为视频制作提供了前所未有的灵活性和精确度。
英国国王学院研究团队开发了潜在精炼解码(LRD)技术,解决了AI文本生成中的速度与准确性平衡难题。该方法通过两阶段设计模仿人类思考过程:先让AI在连续空间中"深思熟虑",保持多种可能性的混合状态,然后"果断行动",逐步确定答案。实验显示,LRD在编程和数学推理任务中准确性提升最高6.3个百分点,生成速度提升最高10.6倍,为AI并行文本生成开辟了新路径。
清华大学团队开发的ViSurf是一种创新的大型视觉语言模型训练方法,巧妙融合了督导式学习和强化学习的优势。该方法通过将标准答案整合到强化学习过程中,让AI既能从正确答案中学习又能保持自主推理能力。实验显示ViSurf在多个视觉任务上显著超越传统方法,特别是在处理模型知识盲区时表现突出,同时有效避免了灾难性遗忘问题,为AI训练提供了更高效稳定的新范式。