“解好电力行业的关键问题,有可能会引领下一波AI浪潮。”中国工程院院士、阿里云创始人王坚2月17日在南方电网总部参加第四届电力调度AI应用大赛时表示。该大赛由南方电网、中国电机工程学会电力系统自动化专委会主办,阿里云承办、阿里达摩院协办。

图:中国工程院院士、阿里云创始人 王坚
王坚认为,纵观AI的发展历程,从Alpha Go、ImageNet到Alpha Fold、ChatGPT,都是通过对某一个问题的攻克,从而带动了人工智能的巨大进步。相信电力行业、工业领域也能找到这样一个问题,这将对社会发展、人类生活带来更大、更切实的影响。
王坚介绍,在1950年代,人类可以想象AI最了不起的事情就是“下棋”。直到深蓝、AlphaGo的出现,AI打败了国际象棋大师,人工智能技术有了很大进步。
几年后,针对“图像识别”这一问题,在AI界又出现了基于深度学习的ImageNet,使得机器对人脸的识别率超过了人类。这又将人工智能带到了新的高度。
近年来出现的Alpha fold,在发现蛋白质结构方面的能力已经超过了一流的科学家,挑战着他们毕生的专业经验。ChatGPT则通过聊天这一场景,为自然语言处理带来了全新的变革。
“人工智能的每次跨越,都是围绕着对某一个问题的攻坚,”王坚说,问题定义得好,可以反过来带动人工智能学科的发展。
王坚指出,工业是用新技术最好的地方。在电力行业、工业领域,我们可以找到比“下棋”更有高度的问题,引领下一波AI浪潮。如果能找到、解好这样一个问题,对推动社会经济发展、人类生活变化,会产生更巨大、更积极的影响。
好文章,需要你的鼓励
这项由Snowflake AI Research发表的研究挑战了传统语言学对大型语言模型的批评,通过引入波兰语言学家Mańczak的理论框架,论证了LLM的成功实际上验证了"频率驱动语言"的观点。研究认为语言本质上是文本总和而非抽象系统,频率是其核心驱动力,为重新理解AI语言能力提供了新视角。
freephdlabor是耶鲁大学团队开发的开源多智能体科研自动化框架,通过创建专业化AI研究团队替代传统单一AI助手的固化工作模式。该框架实现了动态工作流程调整、无损信息传递的工作空间机制,以及人机协作的质量控制系统,能够自主完成从研究构思到论文发表的全流程科研工作,为科研民主化和效率提升提供了革命性解决方案。
德国马普智能系统研究所团队开发出专家混合模型的"即时重新布线"技术,让AI能在使用过程中动态调整专家选择策略。这种方法无需外部数据,仅通过自我分析就能优化性能,在代码生成等任务上提升显著。该技术具有即插即用特性,计算效率高,适应性强,为AI的自我进化能力提供了新思路。
Algoverse AI研究团队提出ERGO系统,通过监测AI对话时的熵值变化来检测模型困惑程度,当不确定性突然升高时自动重置对话内容。该方法在五种主流AI模型的测试中平均性能提升56.6%,显著改善了多轮对话中AI容易"迷路"的问题,为构建更可靠的AI助手提供了新思路。