生成式AI的创新和发展速度前所未有,而这仅仅是一个开始。人们使用这项技术的方式、场景和原因将会非常广泛,甚至超乎想象。初步估计显示,生成式AI市场规模将达到1万亿美元。
生成式AI不仅有望改变人们搜索和创作内容的方式,还能够改善日常生活。借助生成式AI,智能手机能够成为真正的数字助手,让用户自然地沟通交流,并获得贴切的回答。PC用户可以利用这项技术阅读或撰写电子邮件、起草文档和自动创建演示文稿。在驾乘汽车时,对话式车内助手可以对汽车充电、购买停车券或在回家途中预订晚餐提供建议。商店的AI服务台和智能购物车能够根据每周特惠、预算金额和家庭偏好,帮助消费者拟定食谱。
为了释放这项技术的全部潜能并满足日益增长的需求,生成式AI既需要云,也需要数十亿能够以低功耗进行高性能AI计算的网联终端,如智能手机、PC和汽车。这就是混合AI。混合AI计算架构在云端和终端进行分布式处理,能够优化效率并提升整体用户体验。
生成式AI处理可以直接在终端侧运行,也可以按需发送到云端,或者将两者相结合——无论采取何种方式,对用户而言都是无缝实现的。
用户期望拥有与传统搜索类似的体验,那就是能够瞬间显示搜索结果。要满足这样的期望,还要保证服务质量,仅利用云端处理的成本太高,尤其是在需求高峰期,因此难以实现规模化。
数据中心能耗高且价格昂贵。据估计,每一次基于生成式AI的网络搜索查询(query),其成本是传统搜索的10倍。以每天超过100亿次查询计算,每年的增量成本可能达到数十亿美元。网络搜索只是生成式AI变革多个行业的众多方式之一。
除成本外,在云端进行全部推理处理还面临隐私、可靠性和性能方面的挑战。当请求进入云端、数据离开终端时,就会产生潜在的安全问题。事实上,由于收集和存储个人数据等监管和合规问题导致模型被禁用或暂时禁用的情况已经出现。
混合AI势不可挡。随着人们不断探寻使用生成式AI的新方式,对云基础设施的需求将激增。混合AI处理将是计算的下一次转型,正如我们所看到的从大型主机演进到台式机,再到今天云和我们手中的终端相结合的模式一样。
利用高性能、低功耗终端的处理能力,将能够高效推动生成式AI的规模化扩展。云端和终端将协同工作,通过强大、高效且高度优化的AI功能,打造下一代用户体验。
本文原载于Fortune.com:https://fortune.com/2023/05/15/qualcomm-ceo-ai-is-going-to-touch-every-corner-of-our-lives-devices-tech-cristiano-amon/
好文章,需要你的鼓励
腾讯ARC实验室推出AudioStory系统,首次实现AI根据复杂指令创作完整长篇音频故事。该系统结合大语言模型的叙事推理能力与音频生成技术,通过交错式推理生成、解耦桥接机制和渐进式训练,能够将复杂指令分解为连续音频场景并保持整体连贯性。在AudioStory-10K基准测试中表现优异,为AI音频创作开辟新方向。
Meta与特拉维夫大学联合研发的VideoJAM技术,通过让AI同时学习外观和运动信息,显著解决了当前视频生成模型中动作不连贯、违反物理定律的核心问题。该技术仅需添加两个线性层就能大幅提升运动质量,在多项测试中超越包括Sora在内的商业模型,为AI视频生成的实用化应用奠定了重要基础。
上海AI实验室发布OmniAlign-V研究,首次系统性解决多模态大语言模型人性化对话问题。该研究创建了包含20万高质量样本的训练数据集和MM-AlignBench评测基准,通过创新的数据生成和质量管控方法,让AI在保持技术能力的同时显著提升人性化交互水平,为AI价值观对齐提供了可行技术路径。
谷歌DeepMind团队开发的GraphCast是一个革命性的AI天气预测模型,能够在不到一分钟内完成10天全球天气预报,准确性超越传统方法90%的指标。该模型采用图神经网络技术,通过学习40年历史数据掌握天气变化规律,在极端天气预测方面表现卓越,能耗仅为传统方法的千分之一,为气象学领域带来了效率和精度的双重突破。