当前,越来越多的初创企业与大型半导体公司正争相推出新型AI芯片。Synopsys、Cadence以及Mentor Graphics等电子工具与设计服务厂商,则希望寻求更多前所未有的方案,帮助设计师们加快产品投产速度。
有趣的点来了:目前各家公司采取的主流研发提速手段之一,就是利用AI技术协助构建更强大的AI芯片。其中,设计流程后端(即物理设计阶段)对AI工具的支持表现得尤为成熟,而各早期采用者也得到了相当可观的收益。
图一:这是一块英伟达Drive AGX Orin芯片,其结构极度复杂,包含多达170亿个晶体管。有趣的是,目前业界正利用AI技术为此类芯片提供更高效的设计支持。
相关问题
实际上,设计团队相当于面对着一个规模庞大的“搜索”难题:单是平面图形搜索,就涵盖惊人的1090,000 万种可能性。与之对应,国际象棋中“只”包含10123种可能性,而围棋则包含10360种可能状态。之所以要用棋类作类比,是因为目前的AI软件完全能够以下棋的方式“玩转”物理设计。虽然AI方案往往需要耗费巨量计算资源,但同时也能够快速对多到难以想象的选项做出分类,优化参数实现一系列既定目标,从而高效为芯片设计找到最理想的PPA组合。
强化学习——攻克芯片设计难题的关键
AI领域存在一个无监督学习分支,被称为强化学习(RL),能够以试错方式探索并掌握解决问题的方法。具体来讲,计算机会不断“尝试”一个个解决方案,并通过结果的趋好/趋坏来不断增强该解决方案中的参数。在经过数万亿次的重复之后,解决方案终将收敛——这就代表着“最佳实践”。
电子设计自动化(EDA)厂商Synopsys公司一直在与客户联手推进这方面试验,并获得了令人欣喜的结果。
总结
再结合Synopsys在强化学习方面的早期研究成果,相信大家更能够理解AI辅助设计的重要份量,以及黄仁勋对这一方案的认可与期望。
好文章,需要你的鼓励
AIM Intelligence联合多所知名大学揭示了音频AI系统的重大安全漏洞,开发出名为WhisperInject的攻击方法。这种攻击能让看似无害的音频指令操控AI生成危险内容,成功率超过86%,完全绕过现有安全机制。研究暴露了多模态AI系统的系统性安全风险,对全球数十亿智能设备构成潜在威胁。
新加坡国立大学研究团队系统梳理了视觉强化学习领域的最新进展,涵盖超过200项代表性工作。研究将该领域归纳为四大方向:多模态大语言模型、视觉生成、统一模型框架和视觉-语言-动作模型,分析了从RLHF到可验证奖励范式的政策优化策略演进,并识别出样本效率、泛化能力和安全部署等关键挑战,为这一快速发展的交叉学科提供了完整的技术地图。
浙江大学研究团队通过OmniEAR基准测试揭示了当前AI模型在物理世界推理方面的严重缺陷。测试显示,即使最先进的AI在明确指令下能达到85-96%成功率,但面对需要从物理约束推断行动的任务时,成功率骤降至56-85%。研究发现信息过载反而降低AI协作能力,监督学习虽能改善单体任务但对多智能体协作效果甚微,表明当前架构存在根本局限性。
纽约大学和Aimpoint Digital Labs的研究团队首次揭示了Transformer模型训练中"大规模激活"的完整发展轨迹。这些影响力比普通激活大千倍的"超级激活"遵循可预测的数学规律,研究者开发出五参数公式能以98.4%准确率预测其变化。更重要的是,通过调整模型架构参数如注意力密度、宽深比等,可以在训练前就预测和控制这些关键激活的行为,为设计更高效、量化友好的AI模型提供了全新工具。