当前,越来越多的初创企业与大型半导体公司正争相推出新型AI芯片。Synopsys、Cadence以及Mentor Graphics等电子工具与设计服务厂商,则希望寻求更多前所未有的方案,帮助设计师们加快产品投产速度。
有趣的点来了:目前各家公司采取的主流研发提速手段之一,就是利用AI技术协助构建更强大的AI芯片。其中,设计流程后端(即物理设计阶段)对AI工具的支持表现得尤为成熟,而各早期采用者也得到了相当可观的收益。
图一:这是一块英伟达Drive AGX Orin芯片,其结构极度复杂,包含多达170亿个晶体管。有趣的是,目前业界正利用AI技术为此类芯片提供更高效的设计支持。
相关问题
实际上,设计团队相当于面对着一个规模庞大的“搜索”难题:单是平面图形搜索,就涵盖惊人的1090,000 万种可能性。与之对应,国际象棋中“只”包含10123种可能性,而围棋则包含10360种可能状态。之所以要用棋类作类比,是因为目前的AI软件完全能够以下棋的方式“玩转”物理设计。虽然AI方案往往需要耗费巨量计算资源,但同时也能够快速对多到难以想象的选项做出分类,优化参数实现一系列既定目标,从而高效为芯片设计找到最理想的PPA组合。
强化学习——攻克芯片设计难题的关键
AI领域存在一个无监督学习分支,被称为强化学习(RL),能够以试错方式探索并掌握解决问题的方法。具体来讲,计算机会不断“尝试”一个个解决方案,并通过结果的趋好/趋坏来不断增强该解决方案中的参数。在经过数万亿次的重复之后,解决方案终将收敛——这就代表着“最佳实践”。
电子设计自动化(EDA)厂商Synopsys公司一直在与客户联手推进这方面试验,并获得了令人欣喜的结果。
总结
再结合Synopsys在强化学习方面的早期研究成果,相信大家更能够理解AI辅助设计的重要份量,以及黄仁勋对这一方案的认可与期望。
好文章,需要你的鼓励
腾讯ARC实验室推出AudioStory系统,首次实现AI根据复杂指令创作完整长篇音频故事。该系统结合大语言模型的叙事推理能力与音频生成技术,通过交错式推理生成、解耦桥接机制和渐进式训练,能够将复杂指令分解为连续音频场景并保持整体连贯性。在AudioStory-10K基准测试中表现优异,为AI音频创作开辟新方向。
Meta与特拉维夫大学联合研发的VideoJAM技术,通过让AI同时学习外观和运动信息,显著解决了当前视频生成模型中动作不连贯、违反物理定律的核心问题。该技术仅需添加两个线性层就能大幅提升运动质量,在多项测试中超越包括Sora在内的商业模型,为AI视频生成的实用化应用奠定了重要基础。
上海AI实验室发布OmniAlign-V研究,首次系统性解决多模态大语言模型人性化对话问题。该研究创建了包含20万高质量样本的训练数据集和MM-AlignBench评测基准,通过创新的数据生成和质量管控方法,让AI在保持技术能力的同时显著提升人性化交互水平,为AI价值观对齐提供了可行技术路径。
谷歌DeepMind团队开发的GraphCast是一个革命性的AI天气预测模型,能够在不到一分钟内完成10天全球天气预报,准确性超越传统方法90%的指标。该模型采用图神经网络技术,通过学习40年历史数据掌握天气变化规律,在极端天气预测方面表现卓越,能耗仅为传统方法的千分之一,为气象学领域带来了效率和精度的双重突破。