
作者|高飞
去年这个时候,投资圈曾经有过一个“投模型还是投应用”的辩论。现在看来,这是一个无意义的议题,因为技术生态的逻辑已经变了。
多数人仍然习惯用传统的“两层思维”生态架构来思考大模型:系统基座在下面,面向用户的应用在上面,二者泾渭分明。
历史上看,这种二分法是对的:
1. DOS 操作系统面世时,没有可执行的 “.com” 或 “.exe” 程序,用户根本无从交互;
2. Windows 问世时,也没有人会拿一个操作系统单独“空跑”。哪怕是当年经典的“纸牌”和“扫雷”,也是微软为了让大众理解并熟悉图形界面,不得不自己编写的小应用;
3. iOS 让智能手机成为一种基础设施,但首批吸引用户使用的,还是纸飞机、拍照,甚至打电话这些关键应用;
4. 云计算概念提出来后,人们谈论的都是基于云的 SaaS 和各种网站,用不了多久就变成“这家公司用 AWS 跑后台”这样的陈述。云计算本身并没有变成一个直接面向大众的入口。
但是,AI 之所以是一场技术革命,就意味着它会颠覆我们已有的常识。我认为,两层架构在这个时代已经失效。
举个例子:OpenAI 的 ChatGPT 从一开始发布时,就既是一个模型,又是一个面向大众的消费级应用。
你不需要再去下载任何“子程序”才能让 ChatGPT 跑起来;只需要在对话框输入文字(提示工程,Prompt Engineering),它就能执行推理或生成内容。它甚至创造了最快达到 1 亿月活用户的新纪录。这是一个毫无争议的应用。
但它同时也是一种模型,OpenAI提供了 API 调用,让无数应用可以基于它构建。
当我们说 “DeepSeek” 时,既可能指一种在 LMarena、AIME 榜单上排名靠前的前沿推理模型,也可以指一款曾登顶中美等多个国家 iOS 应用商店的 App。
所以,下次再有人问:“我们该投大语言模型还是应用层?”也许可以告诉他,这不是一个非此即彼的问题。在这个领域里,模型就是应用,应用也就是模型。
如果你在做模型,你的用户并不需要了解多少编译、链接或 SDK 之类的东西,就能够通过自然语言提示来使用它。
反过来,如果你在做 AI 应用,其实最终还是在向用户交付一项“大模型”能力,无论你使用的是提示工程、强化学习、工作流、Agent,还是别的“套壳”手段,底层都还是那台贯通一切的“大脑”。
模型与应用的边界正在塌陷,用户甚至不知道,或者并不在意自己是在“跑模型”还是在“用程序”。
但是,除了投资规模,做应用也并不比做基座模型廉价,因为在这个时代,切换一个模型底座并不比换辆车开更难。几乎你使用的所有 AI 应用,都提供了在后台切换模型的设置选项。
你能在云计算时代想象这些吗?一个网站提供了切换不同云主机访问?还记得适配安卓、iOS 等不同系统、不同尺寸的手机有多难吗?
只不过,应用开发者还是需要一点戒备。你的产品最好不要在“智能演化”的延长线上。就像山姆·奥特曼(Sam Altman)所说:如果基座模型变得更好,你的应用也应该同步变得更好,而不是被彻底替代、不再被需要。
好文章,需要你的鼓励
Adobe研究院与UCLA合作开发的Sparse-LaViDa技术通过创新的"稀疏表示"方法,成功将AI图像生成速度提升一倍。该技术巧妙地让AI只处理必要的图像区域,使用特殊"寄存器令牌"管理其余部分,在文本到图像生成、图像编辑和数学推理等任务中实现显著加速,同时完全保持了输出质量。
香港科技大学团队开发出A4-Agent智能系统,无需训练即可让AI理解物品的可操作性。该系统通过"想象-思考-定位"三步法模仿人类认知过程,在多个测试中超越了需要专门训练的传统方法。这项技术为智能机器人发展提供了新思路,使其能够像人类一样举一反三地处理未见过的新物品和任务。
韩国KAIST开发的Vector Prism系统通过多视角观察和统计推理,解决了AI无法理解SVG图形语义结构的难题。该系统能将用户的自然语言描述自动转换为精美的矢量动画,生成的动画文件比传统视频小54倍,在多项评估中超越顶级竞争对手,为数字创意产业带来重大突破。
华为诺亚方舟实验室提出VersatileFFN创新架构,通过模仿人类双重思维模式,设计了宽度和深度两条并行通道,在不增加参数的情况下显著提升大语言模型性能。该方法将单一神经网络分割为虚拟专家并支持循环计算,实现了参数重用和自适应计算分配,为解决AI模型内存成本高、部署难的问题提供了全新思路。