亚马逊获得的一份题为“预期发货的系统和方法”专利文件显示,未来亚马逊将通过大数据对用户购买行为进行分析,实现在他们购物尚未下单前,提前发出包裹,以节约网购时间。
此前,亚马逊曾暗示,公司将很快利用无人机向用户发送网购家居用品。而目前亚马逊最新专利暗示的技术则更为离奇:在用户为购买之前,亚马逊将根据数据分析、熟悉用户偏好,提前将物品运往离你不远的货运中心。一旦用户下单、购买,亚马逊将在最短时间内将订购物品送达。
亚马逊在专利文档中表示,从下单到收货之间的时间延迟可能会降低人们的购物意愿,进一步阻碍了用户的网上购物活动。
亚马逊利用大数据,从用户之前的购买行为中,分析并预测用户接下来会觊觎什么电子产品或美容产品,而后在他们实际购物前,将包裹发出,而这些包裹通常会暂存在离用户不远的大仓库里。但亚马逊并在专利中,并未透露这项新技术可能缩短的配送时间。
该专利甚至建议,亚马逊可能向用户免费送出一些小礼品,即使用户没有点击购买。
好文章,需要你的鼓励
AIM Intelligence联合多所知名大学揭示了音频AI系统的重大安全漏洞,开发出名为WhisperInject的攻击方法。这种攻击能让看似无害的音频指令操控AI生成危险内容,成功率超过86%,完全绕过现有安全机制。研究暴露了多模态AI系统的系统性安全风险,对全球数十亿智能设备构成潜在威胁。
新加坡国立大学研究团队系统梳理了视觉强化学习领域的最新进展,涵盖超过200项代表性工作。研究将该领域归纳为四大方向:多模态大语言模型、视觉生成、统一模型框架和视觉-语言-动作模型,分析了从RLHF到可验证奖励范式的政策优化策略演进,并识别出样本效率、泛化能力和安全部署等关键挑战,为这一快速发展的交叉学科提供了完整的技术地图。
浙江大学研究团队通过OmniEAR基准测试揭示了当前AI模型在物理世界推理方面的严重缺陷。测试显示,即使最先进的AI在明确指令下能达到85-96%成功率,但面对需要从物理约束推断行动的任务时,成功率骤降至56-85%。研究发现信息过载反而降低AI协作能力,监督学习虽能改善单体任务但对多智能体协作效果甚微,表明当前架构存在根本局限性。
纽约大学和Aimpoint Digital Labs的研究团队首次揭示了Transformer模型训练中"大规模激活"的完整发展轨迹。这些影响力比普通激活大千倍的"超级激活"遵循可预测的数学规律,研究者开发出五参数公式能以98.4%准确率预测其变化。更重要的是,通过调整模型架构参数如注意力密度、宽深比等,可以在训练前就预测和控制这些关键激活的行为,为设计更高效、量化友好的AI模型提供了全新工具。