戴尔拥有大量的产品专家,他们搜集和分析用户需求,了解到用户需要什么样的工作站产品,用户有着什么样的应用需求,戴尔的工程师将这些需要反应到最终的产品设计中,比如说,用户需要更加轻薄的产品,戴尔的工程师就要去实践和设计,哪些材料能够更好的帮助到用户,在过去,戴尔采用了镁作为移动工作站的外壳材料,但是这样的材料相对来说比较笨重,同时容易留下指纹,而由于外壳是金属,在处理较高工作负荷任务时,内部热量会比较明显的体现在外壳上,体验不佳,为了解决这个问题,戴尔的工程师团队创新性的采用了铝合金材料作为基底,硅材料作为表面材质,再结合上碳纤维的背板,这样的类肤质材质解决了这些问题,不仅手感更好,更加轻巧,手感就像碰触真正的肌肤,拉近了科技与生活的,工作与生活的距离。
Ken Musgrave还为我们分享了其他一些戴尔Precision工作站用户体验上的设计,比如说各种易拆卸的设计,除了机箱的各个位置方百年拆卸之外,光驱、硬盘、内存、显卡都可以在数秒之内就可以徒手卸下或者替换。
Ken Musgrave认为,体验的方式包含有两个部分:其一是结合行业用户需求的设计,其二是可用性的分析设计,一个实现创意,一个体现技术价值,将这两者融为一体是其他从事工作站设计领域的企业所没有做到的。
在未来,工作站也将更多的实现移动性,移动工作站将逐渐拥有更大的发展空间,同时,触摸、触控也更多的被最终用户所采纳,为了满足用户这样的需求,戴尔的设计团队也与公司内其他团队一起,致力于打造出更加轻便,拥有更加自然的交互方式,任何时间地点都可以展开工作的工作站产品。
Ken Musgrave的团队不仅仅是戴尔工作站的设计缔造者,同时还是戴尔工作站第一线的用户,他们用了大量的Precision工作站产品作为生产力工具,他们喜欢最新的Precision产品,也会把他们对于产品的理解、感悟融入到新的产品设计中。
好文章,需要你的鼓励
这项研究利用大语言模型解决科学新颖性检测难题,南洋理工大学团队创新性地构建了闭合领域数据集并提出知识蒸馏框架,训练轻量级检索器捕捉想法层面相似性而非表面文本相似性。实验表明,该方法在市场营销和NLP领域显著优于现有技术,为加速科学创新提供了有力工具。
un?CLIP是一项创新研究,通过巧妙反转unCLIP生成模型来增强CLIP的视觉细节捕捉能力。中国科学院研究团队发现,虽然CLIP在全局图像理解方面表现出色,但在捕捉细节时存在不足。他们的方法利用unCLIP生成模型的视觉细节表示能力,同时保持与CLIP原始文本编码器的语义对齐。实验结果表明,un?CLIP在MMVP-VLM基准、开放词汇语义分割和视觉中心的多模态任务上显著优于原始CLIP和现有改进方法,为视觉-语言模型的发展提供了新思路。
这项研究介绍了RPEval,一个专为评估大语言模型角色扮演能力而设计的新基准。研究团队从法国里尔大学开发的这一工具专注于四个关键维度:情感理解、决策制定、道德对齐和角色一致性,通过单轮交互实现全自动评估。研究结果显示Gemini-1.5-Pro在总体表现上领先,而GPT-4o虽在决策方面表现出色,但在角色一致性上存在明显不足。这一基准为研究人员提供了一个可靠、可重复的方法来评估和改进大语言模型的角色扮演能力。
这篇论文介绍了LegalSearchLM,一种创新的法律案例检索方法,将检索任务重新定义为法律要素生成。研究团队构建了LEGAR BENCH数据集,涵盖411种犯罪类型和120万案例,并开发了能直接生成关键法律要素的检索模型。实验表明,该模型在准确率上超越传统方法6-20%,且在未见犯罪类型上展现出强大泛化能力。这一突破为法律专业人士提供了更高效、精准的案例检索工具。