作为任何企业进行新的应用部署或系统更新的重要组成部分,数据迁移可以完成的远不止简单的数据传输。我们完全可以把它当作改进现有数据质量的一个机会,而且还可以对信息应用采用更高标准,为公司增添力量。它也可作为数据治理计划的理想试点。
数据治理是一个不断发展的学科。其目的是通过持续应用标准流程及方法,给予公司对数据质量和安全性的控制。
数据治理着眼于:提高数据质量、保护敏感数据、鼓励信息共享、提供关键业务数据、信息生命周期中的管理。
“许多数据迁移项目存在这样的问题:过于频繁地把遗留环境中的坏数据移动到全新系统中。”Informatica产品战略副总裁RobKarel说。“在您把数据迁移到新的应用系统之前,您必须先要询问哪些数据可以放入新的干净环境中。”
Karel主张将应用数据清理规则、统协重复数据以及清除孤立和未使用数据作为迈向数据治理标准的良好开端。
“因为对数据治理项目的支持或许可望而不可及,通常需要一套有用的具体步骤来开始。”Karel建议要像TDWI研究概括的那样,使用以下八个步骤,启动一个包含数据迁移的数据治理方案:
学习数据质量技术并加以应用。数据质量是一整套技术和实践,它能为企业数据迁移工作的成功做出巨大贡献。
及早并经常剖析数据质量。剖析数据质量奠定了企业为新系统制定数据质量、模型、架构及使用规则标准的基础。
在前进过程中创建业务词汇表。根据业务使用情况定义遗留或新系统中的数据。
使用数据质量度量标准。使用这些度量标准持续改进数据,并治理数据迁移前后的整个生命周期。
纠正不合规数据。使用有利工具,以允许运行时自动及手动数据迁移数据的一致性问题。
通过验证和确认治理实时数据。一旦新系统启动并运行,在持续基础上监测关键信息,以确保数据与数据治理政策及标准相容。
使用管理技术以调整数据治理和业务目标。数据管理非常重要,因为这一角色为业务和技术团队的沟通服务。
协作管理。跨职能团队决定迁移过程中哪些数据应该被治理以及如何治理,所有数据并非同等重要。
好文章,需要你的鼓励
这项研究利用大语言模型解决科学新颖性检测难题,南洋理工大学团队创新性地构建了闭合领域数据集并提出知识蒸馏框架,训练轻量级检索器捕捉想法层面相似性而非表面文本相似性。实验表明,该方法在市场营销和NLP领域显著优于现有技术,为加速科学创新提供了有力工具。
un?CLIP是一项创新研究,通过巧妙反转unCLIP生成模型来增强CLIP的视觉细节捕捉能力。中国科学院研究团队发现,虽然CLIP在全局图像理解方面表现出色,但在捕捉细节时存在不足。他们的方法利用unCLIP生成模型的视觉细节表示能力,同时保持与CLIP原始文本编码器的语义对齐。实验结果表明,un?CLIP在MMVP-VLM基准、开放词汇语义分割和视觉中心的多模态任务上显著优于原始CLIP和现有改进方法,为视觉-语言模型的发展提供了新思路。
这项研究介绍了RPEval,一个专为评估大语言模型角色扮演能力而设计的新基准。研究团队从法国里尔大学开发的这一工具专注于四个关键维度:情感理解、决策制定、道德对齐和角色一致性,通过单轮交互实现全自动评估。研究结果显示Gemini-1.5-Pro在总体表现上领先,而GPT-4o虽在决策方面表现出色,但在角色一致性上存在明显不足。这一基准为研究人员提供了一个可靠、可重复的方法来评估和改进大语言模型的角色扮演能力。
这篇论文介绍了LegalSearchLM,一种创新的法律案例检索方法,将检索任务重新定义为法律要素生成。研究团队构建了LEGAR BENCH数据集,涵盖411种犯罪类型和120万案例,并开发了能直接生成关键法律要素的检索模型。实验表明,该模型在准确率上超越传统方法6-20%,且在未见犯罪类型上展现出强大泛化能力。这一突破为法律专业人士提供了更高效、精准的案例检索工具。