几乎在两年前的同一时间,也是四月份,CNET记者曾经受邀参观位于硅谷的甲骨文总部,而这次是第二次。时隔两年,甲骨文对中国的策略有哪些推行重点,这些策略贯彻和实施的怎么样?其间这些策略有没有改变?这是我们最感兴趣的问题。
在刚刚公布不久的第三季度财报中,甲骨文实现收入93.07亿美元、同比增长4%,利润25.65亿美元、同比增长2%的成绩,其中云计算和集成系统是推动增长的双引擎。云软件订购收入增长25%,其中云应用软件增长60%,季度收入已接近3亿美元。硬件产品收入增长8%,这也是甲骨文收购Sun以来首次实现增长,而集成系统收入则增长了30%。
在云计算和集成系统的增长中,中国市场做出的贡献大吗?甲骨文在中国推行云计算和集成系统的脚步够快吗?这是我此行中特别想弄清楚的问题。
因为在我看来,面对无论老对手IBM、微软还是新对手亚马逊纷纷将公有云落地在中国,并且在中国云计算市场大展拳脚,甲骨文似乎不着急;而颠覆传统硬件采购模式的软硬件集成的一体机,中国客户接受程度如何呢,恐怕也不那么顺利吧。
两年前的甲骨文总部之行,让记者满满感受到的是甲骨文浑身散发的傲气,它藐视对手,它特别崇拜自己的技术,这个有着浓浓的工程师文化的公司,或许不那么会左右逢源,它推崇的,还是硬碰硬的拿实力说话。
但是两年的时间,IT产业被新兴技术推着跑步前进,跑在前边的更多是互联网公司,他们轻装上阵,跑得轻松也快;而传统的IT企业,多年积累,要带着的东西多,跑步速度肯定受影响。
这一现实,甲骨文同样面对,它该怎么加速?
本次总部之行,CNET将会采访甲骨文公司总裁马克·赫德以及几乎所有产品线的副总裁,详情请关注CNET的详细报道。
好文章,需要你的鼓励
这项研究利用大语言模型解决科学新颖性检测难题,南洋理工大学团队创新性地构建了闭合领域数据集并提出知识蒸馏框架,训练轻量级检索器捕捉想法层面相似性而非表面文本相似性。实验表明,该方法在市场营销和NLP领域显著优于现有技术,为加速科学创新提供了有力工具。
un?CLIP是一项创新研究,通过巧妙反转unCLIP生成模型来增强CLIP的视觉细节捕捉能力。中国科学院研究团队发现,虽然CLIP在全局图像理解方面表现出色,但在捕捉细节时存在不足。他们的方法利用unCLIP生成模型的视觉细节表示能力,同时保持与CLIP原始文本编码器的语义对齐。实验结果表明,un?CLIP在MMVP-VLM基准、开放词汇语义分割和视觉中心的多模态任务上显著优于原始CLIP和现有改进方法,为视觉-语言模型的发展提供了新思路。
这项研究介绍了RPEval,一个专为评估大语言模型角色扮演能力而设计的新基准。研究团队从法国里尔大学开发的这一工具专注于四个关键维度:情感理解、决策制定、道德对齐和角色一致性,通过单轮交互实现全自动评估。研究结果显示Gemini-1.5-Pro在总体表现上领先,而GPT-4o虽在决策方面表现出色,但在角色一致性上存在明显不足。这一基准为研究人员提供了一个可靠、可重复的方法来评估和改进大语言模型的角色扮演能力。
这篇论文介绍了LegalSearchLM,一种创新的法律案例检索方法,将检索任务重新定义为法律要素生成。研究团队构建了LEGAR BENCH数据集,涵盖411种犯罪类型和120万案例,并开发了能直接生成关键法律要素的检索模型。实验表明,该模型在准确率上超越传统方法6-20%,且在未见犯罪类型上展现出强大泛化能力。这一突破为法律专业人士提供了更高效、精准的案例检索工具。