德国一家科研机构面向谷歌眼镜(Google Glass)开发出一款面部识别应用——SHORE,该应用除了可判断人的年龄、性别外,还看通过大量数据,分析、识别人的情绪。
SHORE的全名为“复杂的高速物体识别引擎”(Sophisticated High-speed Object Recognition Engine),由德国弗劳恩霍夫研究所(Fraunhofer Institute)开发。
谷歌眼镜因涉及隐私保护而备受关注,与谷歌眼镜配套的SHORE识别应用,隐私保护问题自然被格外关注。弗劳恩霍夫研究所称,出于隐私保护,他们所收集的数据均未发送到云端。
据悉,“SHORE”的面部识别系统,能够处理来自谷歌眼镜上的实时视频信号,并通过多年来使用C++语言创建的一个“高效”程序库数据进行比对分析,最终实现对人的年龄、性别以及情绪的识别。
“SHORE”的面部识别系统应用可向某些用户提供帮助,比如自闭症患者。该应用还用来进行市场分析及其他更多商业领域。
SHORE应用尚无法下载使用,尚不清楚是技术问题,还是推广问题。弗劳恩霍夫研究所对此未予置评。
好文章,需要你的鼓励
清华大学等多家机构研究团队完成了语音分离技术的全面调研,系统梳理了从传统方法到深度学习的技术演进。研究揭示了"鸡尾酒会问题"的核心挑战,分析了各种学习范式和网络架构的优劣,并通过统一实验框架提供了公平的性能基准。调研涵盖了实时处理、轻量化设计、多模态融合等关键技术方向,为学术界和产业界的技术选型提供了重要参考,推动语音分离从实验室走向实际应用。
浙江大学和腾讯微信视觉团队发现AI图片生成训练中"时机胜过强度"的重要规律,开发出TempFlow-GRPO新方法。通过轨迹分支技术精确评估中间步骤,结合噪声感知权重调整优化不同阶段的学习强度,将训练效率提升三倍,在复杂场景理解方面准确率从63%提升至97%,为AI训练方法论带来重要突破。
谷歌DeepMind发布突破性AI规划技术,让机器人学会像人类一样进行"情境学习"规划。该技术通过Transformer架构实现了快速适应新问题的能力,在迷宫导航、机器人控制等测试中表现优异,为自动驾驶、智能制造、医疗等领域应用奠定基础,标志着向通用人工智能迈出重要一步。
新南威尔士大学研究团队开发了ZARA系统,这是首个零样本运动识别框架,能够在未经专门训练的情况下识别全新的人类活动。该系统集成了自动构建的知识库、多传感器检索机制和分层智能体推理,不仅实现了比现有最强基线高2.53倍的识别准确率,还提供清晰的自然语言解释,为可穿戴设备和健康监护等应用领域带来了突破性进展。