
Google量子人工智能团队当地时间周二宣布,将开始设计和制造基于超导材料的量子信息处理器,这将使量子人工智能实验室利用自行设计的硬件进行量子计算方面的研究工作。
在量子处理器研发方面,Google与加利福尼亚大学圣巴巴拉分校的物理学家约翰•马丁尼斯(John Martinis)及其团队进行了合作。马丁尼斯是量子研究领域的领头羊,今年早些时候因在量子信息处理和计算领域的卓越成就被授予伦敦奖。
Google技术主管哈特穆特•内文(Hartmut Neven)周二在Google+上发帖称,“有了自己的硬件小组,量子人工智能团队就能制造和测试量子优化和推论处理器的新设计。”
量子人工智能实验室是Google、美国宇航局艾姆斯研究中心和高校空间研究协会在2013年联合成立的,目的是研究如何利用量子计算推动机器学习技术的发展。
量子计算机能解决传统计算机难以胜任的、不可想象地复杂的计算问题。当前的计算机中,数据是由0或1表示的。在量子计算机中,数据是由量子位表示的,可以同时是1和0。目前只有为数不多的几家公司在进行量子计算方面的研究,生产和运行量子计算机还存在物理和财务方面的障碍。
尽管Google在考虑利用自己的硬件进行量子计算方面的研究,但量子人工智能团队将继续使用D-Wave的量子计算机进行研究工作。D-Wave是世界上商业化销售量子计算机的第一家公司。内文在帖子中说,“我们将继续与D-Wave的科学家合作,在艾姆斯研究中心利用Vesuvius计算机进行研究工作。Vesuvius的处理器将被升级为1000量子位的华盛顿处理器。”
好文章,需要你的鼓励
openGauss的目标是探索oGRAC和超节点深度融合的可能,打造超节点原生数据库。
清华团队开发DKT模型,利用视频扩散AI技术成功解决透明物体深度估计难题。该研究创建了首个透明物体视频数据集TransPhy3D,通过改造预训练视频生成模型,实现了准确的透明物体深度和法向量估计。在机器人抓取实验中,DKT将成功率提升至73%,为智能系统处理复杂视觉场景开辟新路径。
字节跳动研究团队提出了专家-路由器耦合损失方法,解决混合专家模型中路由器无法准确理解专家能力的问题。该方法通过让每个专家对其代表性任务产生最强响应,同时确保代表性任务在对应专家处获得最佳处理,建立了专家与路由器的紧密联系。实验表明该方法显著提升了从30亿到150亿参数模型的性能,训练开销仅增加0.2%-0.8%,为混合专家模型优化提供了高效实用的解决方案。
上海AI实验室团队开发的Yume1.5是一个革命性的AI视频生成系统,能够从单张图片或文字描述创造无限可探索的虚拟世界。用户可通过键盘控制实时探索,系统8秒内完成生成,响应精度达0.836,远超现有技术。该系统采用创新的时空通道建模和自强制蒸馏技术,支持文本控制的事件生成,为虚拟现实和内容创作领域开辟了新的可能性。