
Google量子人工智能团队当地时间周二宣布,将开始设计和制造基于超导材料的量子信息处理器,这将使量子人工智能实验室利用自行设计的硬件进行量子计算方面的研究工作。
在量子处理器研发方面,Google与加利福尼亚大学圣巴巴拉分校的物理学家约翰•马丁尼斯(John Martinis)及其团队进行了合作。马丁尼斯是量子研究领域的领头羊,今年早些时候因在量子信息处理和计算领域的卓越成就被授予伦敦奖。
Google技术主管哈特穆特•内文(Hartmut Neven)周二在Google+上发帖称,“有了自己的硬件小组,量子人工智能团队就能制造和测试量子优化和推论处理器的新设计。”
量子人工智能实验室是Google、美国宇航局艾姆斯研究中心和高校空间研究协会在2013年联合成立的,目的是研究如何利用量子计算推动机器学习技术的发展。
量子计算机能解决传统计算机难以胜任的、不可想象地复杂的计算问题。当前的计算机中,数据是由0或1表示的。在量子计算机中,数据是由量子位表示的,可以同时是1和0。目前只有为数不多的几家公司在进行量子计算方面的研究,生产和运行量子计算机还存在物理和财务方面的障碍。
尽管Google在考虑利用自己的硬件进行量子计算方面的研究,但量子人工智能团队将继续使用D-Wave的量子计算机进行研究工作。D-Wave是世界上商业化销售量子计算机的第一家公司。内文在帖子中说,“我们将继续与D-Wave的科学家合作,在艾姆斯研究中心利用Vesuvius计算机进行研究工作。Vesuvius的处理器将被升级为1000量子位的华盛顿处理器。”
好文章,需要你的鼓励
过去十年,终端厂商比拼的是“性能”和“参数”,如今,竞争的焦点正转向“智能程度”。
Fractal AI Research实验室开发了Fathom-DeepResearch智能搜索系统,该系统由两个4B参数模型组成,能够进行20多轮深度网络搜索并生成结构化报告。研究团队创新了DUETQA数据集、RAPO训练方法和认知行为奖励机制,解决了AI搜索中的浅层化、重复性和缺乏综合能力等问题,在多项基准测试中显著超越现有开源系统,为AI助手向专业研究工具转变奠定了基础。
快手科技与清华大学合作发现当前AI语言模型训练中存在严重的权重分配不平衡问题,提出了非对称重要性采样策略优化(ASPO)方法。该方法通过翻转正面样本的重要性权重,让模型把更多注意力放在需要改进的部分而非已经表现良好的部分,显著提升了数学推理和编程任务的性能,并改善了训练稳定性。