
今天亚马逊CTO Werner Vogels在AWS re:Invent 2014大会的主题演时,请其合作伙伴Splank的 CEO助阵,他说Splank是一家软件公司,是他的生产型客户、消费性客户等要求他帮助将私有云资源向AWS公有云服务上转移,如耐克、可口可乐等公司,而且很快搞定,他用了10分钟完成的说法。
音乐供应商则上台说,通过AWS平台可以搞定高清,有了AWS他们每月可以为用户增加100兆音乐的推送,这是原本用私有云不能完成的,亚马逊CTO在穿叉上述用户演讲时说,澳大利亚一公司本在私有云需要10天完成的项目,放在AWS上4小时搞定。
一位来自天气预报,每天下载1.7亿次下载的供应商说,800个数据来自于雷达等设备,15分钟为周期天气预报,只有AWS云平台可以支撑。
谷歌眼镜的开发公司也上台,为AWS的省事儿省时完成用私有云不可能完成的项目作了实例证明。
好文章,需要你的鼓励
这项由Snowflake AI Research发表的研究挑战了传统语言学对大型语言模型的批评,通过引入波兰语言学家Mańczak的理论框架,论证了LLM的成功实际上验证了"频率驱动语言"的观点。研究认为语言本质上是文本总和而非抽象系统,频率是其核心驱动力,为重新理解AI语言能力提供了新视角。
freephdlabor是耶鲁大学团队开发的开源多智能体科研自动化框架,通过创建专业化AI研究团队替代传统单一AI助手的固化工作模式。该框架实现了动态工作流程调整、无损信息传递的工作空间机制,以及人机协作的质量控制系统,能够自主完成从研究构思到论文发表的全流程科研工作,为科研民主化和效率提升提供了革命性解决方案。
德国马普智能系统研究所团队开发出专家混合模型的"即时重新布线"技术,让AI能在使用过程中动态调整专家选择策略。这种方法无需外部数据,仅通过自我分析就能优化性能,在代码生成等任务上提升显著。该技术具有即插即用特性,计算效率高,适应性强,为AI的自我进化能力提供了新思路。
Algoverse AI研究团队提出ERGO系统,通过监测AI对话时的熵值变化来检测模型困惑程度,当不确定性突然升高时自动重置对话内容。该方法在五种主流AI模型的测试中平均性能提升56.6%,显著改善了多轮对话中AI容易"迷路"的问题,为构建更可靠的AI助手提供了新思路。