今天亚马逊CTO Werner Vogels在AWS re:Invent 2014大会的主题演时,请其合作伙伴Splank的 CEO助阵,他说Splank是一家软件公司,是他的生产型客户、消费性客户等要求他帮助将私有云资源向AWS公有云服务上转移,如耐克、可口可乐等公司,而且很快搞定,他用了10分钟完成的说法。
音乐供应商则上台说,通过AWS平台可以搞定高清,有了AWS他们每月可以为用户增加100兆音乐的推送,这是原本用私有云不能完成的,亚马逊CTO在穿叉上述用户演讲时说,澳大利亚一公司本在私有云需要10天完成的项目,放在AWS上4小时搞定。
一位来自天气预报,每天下载1.7亿次下载的供应商说,800个数据来自于雷达等设备,15分钟为周期天气预报,只有AWS云平台可以支撑。
谷歌眼镜的开发公司也上台,为AWS的省事儿省时完成用私有云不可能完成的项目作了实例证明。
好文章,需要你的鼓励
新加坡国立大学研究团队开发了SPIRAL框架,通过让AI与自己对弈零和游戏来提升推理能力。实验显示,仅训练AI玩简单扑克游戏就能让其数学推理能力提升8.6%,通用推理提升8.4%,且无需任何数学题目作为训练材料。研究发现游戏中的三种推理模式能成功转移到数学解题中,为AI训练提供了新思路。
同济大学团队开发的GIGA-ToF技术通过融合多帧图像的"图结构"信息,创新性地解决了3D相机噪声问题。该技术利用图像间的不变几何关系,结合深度学习和数学优化方法,在合成数据集上实现37.9%的精度提升,并在真实设备上展现出色泛化能力,为机器人、AR和自动驾驶等领域提供更可靠的3D视觉解决方案。
伊利诺伊大学研究团队通过对比实验发现,经过强化学习训练的视觉语言模型虽然表现出"顿悟时刻"现象,但这些自我纠错行为并不能实际提升推理准确率。研究揭示了AI模型存在"生成-验证差距",即生成答案的能力强于验证答案质量的能力,且模型在自我验证时无法有效利用视觉信息,为AI多模态推理发展提供了重要启示。
MIT等顶尖机构联合提出SparseLoRA技术,通过动态稀疏性实现大语言模型训练加速1.6倍,计算成本降低2.2倍。该方法使用SVD稀疏性估计器智能选择重要计算部分,在保持模型性能的同时显著提升训练效率,已在多个任务上验证有效性。