近日,Amazon在旧金山召开的AWS(Amazon Web Services)峰会宣布,在其云服务家族中加入一项Machine Learning,为没有机器学习背景的开发者提供分析和预测工具。该应用基础版目前有一年的免费期,只限美国东部地区。
在此之前,很多公司如Netflix和维权网站Change.org都在使用Amazon的AWS工具,来对用户行为和数据进行分析和推断。但通过原有工具实现机器学习的任务对技术人员要求较高,Amazon这次希望搭建一个门槛更低的平台,更好地为企业用户服务。
Amazon 内部使用机器学习已经很多年,而这些企业用户对这项技术也垂涎已久。坐拥大量数据的开发者越来越多地需要从这些数据中挖掘价值,比如电商可以根据分析用户 行为关联,选择性地投放广告。这些对数据分析、建模的要求很高,同时用户需求很大。使用Amazon的新工具,只需要大致三步:首先使用Amazon S3或Redshift建模,然后对模型进行验证和优化,最后使用它来进行预测。
在这个领域,目前也是存在竞争的。如微软旗下专注云服务的Azure在二月推出了自己的机器学习工具,而IBM上个月收购AlchemyAPI后,将把AlchemyAPI的深度学习技术整合到Watson核心平台,增强Watson挖掘非结构化数据并识别出它们之间联系的能力。
除 了机器学习工具,Amazon这次一口气推出了另外两个企业服务,一个是云存储服务,叫作“亚马逊弹性文件系统”(Amazon Elastic File System),用以处理容量超过1PB(相当于1024TB)的庞大数据,这么说可能有些抽象,举个例子,1PB存储空间可以是连续十多年拍摄的高清视 频。
另一个是第三方软件交易平台,可能颠覆以往的软件采购模式。像正在席卷的订阅大潮一样,企业客户不再需要签订多年的订购合同,而是可以通过这个平台按月租用软件,并通过Workspaces服务在亚马逊提供的虚拟PC上运行,灵活性增强。
好文章,需要你的鼓励
Queen's大学研究团队提出结构化智能体软件工程框架SASE,重新定义人机协作模式。该框架将程序员角色从代码编写者转变为AI团队指挥者,建立双向咨询机制和标准化文档系统,解决AI编程中的质量控制难题,为软件工程向智能化协作时代转型提供系统性解决方案。
西北工业大学与中山大学合作开发了首个超声专用AI视觉语言模型EchoVLM,通过收集15家医院20万病例和147万超声图像,采用专家混合架构,实现了比通用AI模型准确率提升10分以上的突破。该系统能自动生成超声报告、进行诊断分析和回答专业问题,为医生提供智能辅助,推动医疗AI向专业化发展。
上海AI实验室团队发现自回归图像生成模型存在局部依赖、语义不一致和空间不变性缺失三大问题,提出ST-AR训练方法。该方法通过掩码注意力、跨步骤对比学习和跨视角对比学习,让AI"先理解再生成"。实验显示,ST-AR将LlamaGen模型的图像理解准确率提升一倍以上,图像生成质量提升42-49%,为构建更智能的多模态AI系统开辟新路径。