今日,微软和富士通宣布达成合作,共同致力于通过物联网和M2M(machine to machine)来提高生产效率,降低生产成本。前不久,微软还和德国美诺达成类似的合作。
在汉诺威展会上,富士通展示了IoT/M2M平台从微软Azure数据库调用数据。二者的合作是工业4.0的一部分,它完美地诠释了技术是如何精简系统的,从有关人的系统,到有关机器的系统。
说到富士通,你可能不会把它和农业联系起来。但是,借力微软,富士通正在帮助适合肾病患者的低钾莴笋的大批量生产。同时,富士通还使用云监控庄稼,并将信息反馈给科学家、工程师、计算机。
富士通的坂井宏行说,将微软Azure和富士通IoT/M2M平台结合起来,能撬动整个富士通生态管理系统。包括实时传输可视化加工处理过程,并进行大数据分析,优化生产效率,优化企业决策。
物联网能做的,远远不止最受关注的智能家居。能深刻影响社会的技术变革,往往发生在你看不见的地方。
好文章,需要你的鼓励
想象一下,你有一个非常聪明的朋友,他知道很多知识,但每当需要使用计算器、搜索引擎或查询最新天气时,却变得像个笨手笨脚的孩子。这正是当前大语言模型(简称LLMs,如ChatGPT这类AI系统)面临的尴尬处境。
想象一下,你拥有一个聪明的助手,它知道很多知识,但在面对需要使用计算器、搜索引擎或查询最新信息时却显得笨手笨脚。这正是当前大语言模型(LLMs)面临的困境。虽然这些模型已经通过监督微调(SFT)学会了使用工具的基本能力,但它们常常在面对复杂或不熟悉的场景时表现不佳。
想象你正在和一个智能助手聊天。如果你直接要求它提供有害信息,它很可能会礼貌拒绝。但如果你通过一系列看似无害的对话,逐步引导它走向你的真实目标呢?这就是当前AI安全领域面临的一个严峻挑战——多轮对话中的安全漏洞。
想象你在使用一个非常聪明的AI助手完成一项复杂任务,比如解决一道数学难题。你可能注意到这个助手会花很长时间"思考",一步一步写下大量推理过程,最后才给出答案。虽然这种详细的思考过程确实帮助AI做出了更准确的判断,但同时也带来了一个明显的问题:它太"啰嗦"了,消耗了大量的计算资源和时间。