北京时间4月14日早间消息,人人公司已领投了P2P网贷公司LendingHome一轮7000万美元的融资。
此前有报道称,人人公司已向多家金融科技创业公司累计投资数亿美元,投资目标包括学生贷款服务SocialFinance,以及商业地产股权投资服务Fundrise。
参与LendingHome此次C轮融资的投资方还包括Colony Capital、Cowboy Ventures、First Round Capital、Foundation Capital、Ribbit Capital和SAB Capital。在此轮融资完成后,LendingHome的融资总额达到1.093亿美元。
LendingHome联合创始人马特·亨弗利(Matt Humphrey)和总裁詹姆斯·赫伯特(James Herbert)表示,该公司过去一年取得了出色的业绩。目前该公司仅有85名员工,但过去一年已完成了超过1亿美元的抵押贷款。
人人公司全球副总裁马特·墨菲(Matt Murphy)表示,投资方预计,LendingHome将继续在美国保持快速增长。他拒绝透露LendingHome此轮融资的估值和其他条款。
好文章,需要你的鼓励
这项研究利用大语言模型解决科学新颖性检测难题,南洋理工大学团队创新性地构建了闭合领域数据集并提出知识蒸馏框架,训练轻量级检索器捕捉想法层面相似性而非表面文本相似性。实验表明,该方法在市场营销和NLP领域显著优于现有技术,为加速科学创新提供了有力工具。
un?CLIP是一项创新研究,通过巧妙反转unCLIP生成模型来增强CLIP的视觉细节捕捉能力。中国科学院研究团队发现,虽然CLIP在全局图像理解方面表现出色,但在捕捉细节时存在不足。他们的方法利用unCLIP生成模型的视觉细节表示能力,同时保持与CLIP原始文本编码器的语义对齐。实验结果表明,un?CLIP在MMVP-VLM基准、开放词汇语义分割和视觉中心的多模态任务上显著优于原始CLIP和现有改进方法,为视觉-语言模型的发展提供了新思路。
这项研究介绍了RPEval,一个专为评估大语言模型角色扮演能力而设计的新基准。研究团队从法国里尔大学开发的这一工具专注于四个关键维度:情感理解、决策制定、道德对齐和角色一致性,通过单轮交互实现全自动评估。研究结果显示Gemini-1.5-Pro在总体表现上领先,而GPT-4o虽在决策方面表现出色,但在角色一致性上存在明显不足。这一基准为研究人员提供了一个可靠、可重复的方法来评估和改进大语言模型的角色扮演能力。
这篇论文介绍了LegalSearchLM,一种创新的法律案例检索方法,将检索任务重新定义为法律要素生成。研究团队构建了LEGAR BENCH数据集,涵盖411种犯罪类型和120万案例,并开发了能直接生成关键法律要素的检索模型。实验表明,该模型在准确率上超越传统方法6-20%,且在未见犯罪类型上展现出强大泛化能力。这一突破为法律专业人士提供了更高效、精准的案例检索工具。