来自 WSJ 的消息,位于伦敦的初创公司Realeyes近日获得了欧盟360万欧元(390万美元)的拨款奖励。
Realeyes 创立于2007年,利用图像处理、人工智能、计算机视觉等技术帮助,通过使用网络摄像头或智能手机监测追踪人的面部表情数据,以进行人的情绪识别和行为反 应分析。目前,Realeyes已建立起超过500万帧的人脸数据库,每一帧都有多达7个面部动作注解,比如皱眉意味着困惑,而眉毛向上抬起则表示惊讶。 此外还会有其他面部特征帮助一起进行情绪识别,使分析结果更有说服力。
此外,这项技术将会自动检测人的性别和年龄,并且还会与其他数据库信息进行合并,从而建立起更为具体的个人信息。
Realeyes近日获得的欧盟这笔资助将与来自伦敦帝国理工学院和德国帕绍大学的研究者、以及英国博彩公司PlayGen共同分享,以试图深入研究测量人的情绪,从而识别人们是否对于自己看到的事物表现出喜欢的态度。
Realeyes 的支持者认为这项技术将有非常好的应用前景,例如可以提升驾驶员的安全性,提高课堂教学效率,帮助警察测谎等。而在商业方面,可以帮助商家进行视频广告监 测和内容的重塑。比如AOL可以利用这项技术监测什么样的视频广告内容可以让用户产生兴趣并能够促使他们分享,从而制作提供更好的广告内容。
当然,Realeyes的这项技术也涉及到了个人隐私的问题,尤其是在欧洲个人隐私受到更为严格的法律保护。Realeyes方面表示,这项技术经过了严格的审查,而且只有得到用户非常明确的同意后他们才会进行视频录制和面部情绪研究。
CEO Mihkel Jäätma 认为,未来Realeyes将会进军其他领域,尤其是他想创建一款心理健康产品,可以帮助人们变得快乐并且保持快乐。
好文章,需要你的鼓励
这项研究利用大语言模型解决科学新颖性检测难题,南洋理工大学团队创新性地构建了闭合领域数据集并提出知识蒸馏框架,训练轻量级检索器捕捉想法层面相似性而非表面文本相似性。实验表明,该方法在市场营销和NLP领域显著优于现有技术,为加速科学创新提供了有力工具。
un?CLIP是一项创新研究,通过巧妙反转unCLIP生成模型来增强CLIP的视觉细节捕捉能力。中国科学院研究团队发现,虽然CLIP在全局图像理解方面表现出色,但在捕捉细节时存在不足。他们的方法利用unCLIP生成模型的视觉细节表示能力,同时保持与CLIP原始文本编码器的语义对齐。实验结果表明,un?CLIP在MMVP-VLM基准、开放词汇语义分割和视觉中心的多模态任务上显著优于原始CLIP和现有改进方法,为视觉-语言模型的发展提供了新思路。
这项研究介绍了RPEval,一个专为评估大语言模型角色扮演能力而设计的新基准。研究团队从法国里尔大学开发的这一工具专注于四个关键维度:情感理解、决策制定、道德对齐和角色一致性,通过单轮交互实现全自动评估。研究结果显示Gemini-1.5-Pro在总体表现上领先,而GPT-4o虽在决策方面表现出色,但在角色一致性上存在明显不足。这一基准为研究人员提供了一个可靠、可重复的方法来评估和改进大语言模型的角色扮演能力。
这篇论文介绍了LegalSearchLM,一种创新的法律案例检索方法,将检索任务重新定义为法律要素生成。研究团队构建了LEGAR BENCH数据集,涵盖411种犯罪类型和120万案例,并开发了能直接生成关键法律要素的检索模型。实验表明,该模型在准确率上超越传统方法6-20%,且在未见犯罪类型上展现出强大泛化能力。这一突破为法律专业人士提供了更高效、精准的案例检索工具。