据国外媒体报道,皮克斯动画工作室(Pixar)创始人约翰·雷斯特(John Lasseter)日前在电影艺术与科学学院(Academy of Motion Picture Arts and Sciences)演讲时表示,未来获奖的电影中会有不少作品是由iPhone或GoPro等便携式摄影设备完成的,电影产业会迎来一个新的纪元。
“一些人可能会说,‘那不可能的。’但事实是,(这些便携式摄影设备)确实可以做到。”雷斯特表示,“他们之所以认为不可能,主要是因为这些设备本身的设计初衷并非是用于电影拍摄目的。”
在谈论颠覆性电影技术方面,雷斯特算得上权威人士。作为《玩具总动员》的导演,雷斯特很好地诠释了电脑动画电影的价值。
事实上,雷斯特的“预言”从某种角度看其实已经被实现。在今年圣丹斯电影节上,有一部名为《Tangerine》的电影就几乎完全是通过一部iPhone 5s拍摄的;而几年前,《老男孩》电影导演朴赞郁就曾只用一部iPhone 4制作了一部短电影;至于GoPro,该公司甚至已经开始经营一个在线视频频道,里面的短电影内容则完全由GoPro设备拍摄。当然,这些电影还称不上“获奖级别”的大作,不过从技术上却已经证明了能成为未来电影拍摄工具的可能。
除了预言用iPhone或GoPro拍摄的视频将能够获得电影制作奖项外,雷斯特更指出便携式摄影设备还能给电影风格注入新的活力。
“(iPhone和GoPro)能给电影注入一种我们此前从未有过的活力……我认为一种新的电影流派会伴随着这些新事物一同出现。” 雷斯特表示。
“活力”在这里指的是通过便携式设备拍摄出的电影的风格和个性。尤其以GoPro产品为例,此类拍摄风格能明显强化要传达的第一人称视角意图。
雷斯特最后指出,虽然人们普遍认为在现有电影技术下接受和推广这些新拍摄工具是非必要的,或者不可能的,但在现实中,新工具已被广泛讨论和使用。
好文章,需要你的鼓励
新加坡国立大学研究团队开发了SPIRAL框架,通过让AI与自己对弈零和游戏来提升推理能力。实验显示,仅训练AI玩简单扑克游戏就能让其数学推理能力提升8.6%,通用推理提升8.4%,且无需任何数学题目作为训练材料。研究发现游戏中的三种推理模式能成功转移到数学解题中,为AI训练提供了新思路。
同济大学团队开发的GIGA-ToF技术通过融合多帧图像的"图结构"信息,创新性地解决了3D相机噪声问题。该技术利用图像间的不变几何关系,结合深度学习和数学优化方法,在合成数据集上实现37.9%的精度提升,并在真实设备上展现出色泛化能力,为机器人、AR和自动驾驶等领域提供更可靠的3D视觉解决方案。
伊利诺伊大学研究团队通过对比实验发现,经过强化学习训练的视觉语言模型虽然表现出"顿悟时刻"现象,但这些自我纠错行为并不能实际提升推理准确率。研究揭示了AI模型存在"生成-验证差距",即生成答案的能力强于验证答案质量的能力,且模型在自我验证时无法有效利用视觉信息,为AI多模态推理发展提供了重要启示。
MIT等顶尖机构联合提出SparseLoRA技术,通过动态稀疏性实现大语言模型训练加速1.6倍,计算成本降低2.2倍。该方法使用SVD稀疏性估计器智能选择重要计算部分,在保持模型性能的同时显著提升训练效率,已在多个任务上验证有效性。