拼车业务一直面临着巨大的政府监管压力,Uber不久前不得不暂停了其在法国的UberPop服务。近日,谷歌收购的以色列公司Waze也展开了拼车服务试点,不过其试图以严苛的运营政策,来减少监管压力。
Waze是谷歌在2013年以超过10亿美金价格收购的,该公司利用用户智能手机上的卫星信号来提供实时交通信息。 Waze近日在以色列推出了拼车软件RideWith,通过Waze的导航系统了解驾车者最经常走的路线,并为之匹配同一条路线上有拼车需求的人。
谷歌这一服务一开始会在以色列特拉维夫等三个城市铺开。如果试运营比较成功,这一服务会在更多的以色列城市铺开。但Waze的发言人表示,服务何时正式上线,还没有具体的时间表。
这次实验性质的业务,引起关注不仅因为这是谷歌首次在移动出现领域推出自己的产品,也因为这个拼车服务有着极其严格的运营政策。Waze规定,每天每个司机最多能接两单生意,目的是分摊汽车燃油消耗和车辆保养开支,司机本人不能依靠这个作为职业或是赚钱。
另外,谷歌不仅不会给司机补贴,还会从每单生意中抽百分之十五的佣金。RideWith还会利用Waze的数据库来对司机的轨迹与乘客的轨迹进行对比,以防司机违规。
一天仅限两次拼车的规定,或许能使RideWith避免遭遇Uber在许多国家所面临的抵制,毕竟这将降低对传统出租车行业的冲击,监管起来也更容易。
此前谷歌在移动出行领域一直没有推出自己的产品,而是对Uber进行了投资,谷歌地图等产品也对Uber的出行服务提供了支持。但此次谷歌在拼车业务上小试牛刀,也意味着将来与Uber可能有更多业务上的冲突。
谷歌在研究无人驾驶技术,不久前Uber也与美国卡耐基梅隆大学合作开始了无人驾驶技术研究。若谷歌的无人驾驶应用到移动出行上,其将成为Uber的直接竞争对手。
好文章,需要你的鼓励
这项由Midjourney团队主导的研究解决了AI创意写作中的关键问题:如何让AI既能写出高质量内容,又能保持创作的多样性和趣味性。通过引入"偏差度"概念和开发DDPO、DORPO两种新训练方法,他们成功让AI学会从那些被传统方法忽视的优秀独特样本中汲取创意灵感,最终训练出的模型在保持顶级质量的同时,创作多样性接近人类水平,为AI创意写作开辟了新方向。
上海AI实验室联合多所高校开发出VisualPRM系统,这是首个专门用于多模态推理的过程奖励模型。该系统能像老师批改作业一样逐步检查AI的推理过程,显著提升了AI在视觉推理任务上的表现。研究团队构建了包含40万样本的训练数据集和专门的评估基准,实现了在七个推理基准上的全面性能提升,即使是最先进的大型模型也获得了5.9个百分点的改进。
上海AI实验室团队通过LEGO积木设计了创新评测基准LEGO-Puzzles,系统测试了20个先进多模态大语言模型的空间推理能力。研究发现即使最强AI模型准确率仅57.7%,远低于人类93.6%的表现,揭示了当前AI在三维空间理解和多步序列推理方面的重大不足,为机器人、自动驾驶等应用发展提供重要参考。
字节跳动团队突破了AI图像生成领域的三大难题:身份识别不准确、文字理解偏差和图片质量不佳。他们开发的InfiniteYou技术采用创新的InfuseNet架构和多阶段训练策略,能够根据用户照片和文字描述生成高质量个性化图像。实验显示该技术在身份相似度、文本匹配度和图像质量方面均超越现有最佳方案,并具备出色的兼容性,为个性化内容创作开辟了新道路。