7月20日,滴滴Di-Tech算法大赛落幕,一等奖获得者拿到了10万美元的大奖。在算法大赛圆桌会议上,滴滴研究院院长何晓飞解释了自己如何被滴滴吸引,并且给业内顶尖人才提出建议,应该解决更多有价值的实际问题。
何晓飞把人工智能的来临形容为“大势所趋”,而自己来滴滴则是“顺势而为”。在过去10年,中国学术界和工业界总体来讲是隔离的。但在美国,这个氛围是不一样的。美国很多高校解决的问题不是纯粹意义的研究,而是直接去解决工业界的需求,产业和工业互相促进。
目前滴滴要解决的出行问题,跟谷歌AlphaGo一样,都需要人工智能,不一样的地方是,滴滴需要的计算比AlphaGo更加复杂。因为每一条道路都是计算网格中的一部分,道路的网格复杂度远远超过围棋网格,此外还需要增加时间维度,因为司机在路上行驶,所以每一秒钟,需求都会发生变化。
在人工智能领域,算法是引擎,大数据是燃料。目前高校有最聪明的人才,但是他们得不到大数据燃料,所以很难训练出更聪明的算法引擎。本次滴滴算法大赛开放了滴滴平台上部分脱敏数据,给参赛人员进行研究,得到数据的参赛队伍交出了令人惊喜的算法。
之后,滴滴希望跟高校有更多合作,但是不希望成为企业抛出问题给研究机构解决这种模式。而是希望通过长期合作、开放共赢的方式,实现共同成长。高校有一流的研究人才,在基础研究领域有深厚的积累,滴滴有海量的大数据,需要解决出行的基础问题,双方很多合作契机。
滴滴研究院副教授叶杰平曾经是密歇根大学终身教授,加入滴滴同样也是被人工智能即将到来的“召唤”、滴滴要解决的世界难题,以及滴滴所拥有的海量数据所吸引。除了完成日常工作之外,叶杰平教授在滴滴开设了人工智能课程,通过讲课的方式使算法人才得到更快的成长。
除了召开算法大赛之外,滴滴还在探索其他与高校合作的形式。比如去年开始的“新锐计划”,对研究生、博士生有特别好的人工智能算法基础的,滴滴会有一个专门的绿色通道。同时,滴滴也在探索更多其他数据、项目上的合作方式。
何晓飞认为,虽然机器学习已经提出很多年,但随着计算能力、大数据存储能力的提高,人工智能大规模爆发的契机已经来临,而算法引擎需要更多顶尖人才的参与,需要学术界和工业界共同的合作和努力。
好文章,需要你的鼓励
这项研究利用大语言模型解决科学新颖性检测难题,南洋理工大学团队创新性地构建了闭合领域数据集并提出知识蒸馏框架,训练轻量级检索器捕捉想法层面相似性而非表面文本相似性。实验表明,该方法在市场营销和NLP领域显著优于现有技术,为加速科学创新提供了有力工具。
un?CLIP是一项创新研究,通过巧妙反转unCLIP生成模型来增强CLIP的视觉细节捕捉能力。中国科学院研究团队发现,虽然CLIP在全局图像理解方面表现出色,但在捕捉细节时存在不足。他们的方法利用unCLIP生成模型的视觉细节表示能力,同时保持与CLIP原始文本编码器的语义对齐。实验结果表明,un?CLIP在MMVP-VLM基准、开放词汇语义分割和视觉中心的多模态任务上显著优于原始CLIP和现有改进方法,为视觉-语言模型的发展提供了新思路。
这项研究介绍了RPEval,一个专为评估大语言模型角色扮演能力而设计的新基准。研究团队从法国里尔大学开发的这一工具专注于四个关键维度:情感理解、决策制定、道德对齐和角色一致性,通过单轮交互实现全自动评估。研究结果显示Gemini-1.5-Pro在总体表现上领先,而GPT-4o虽在决策方面表现出色,但在角色一致性上存在明显不足。这一基准为研究人员提供了一个可靠、可重复的方法来评估和改进大语言模型的角色扮演能力。
这篇论文介绍了LegalSearchLM,一种创新的法律案例检索方法,将检索任务重新定义为法律要素生成。研究团队构建了LEGAR BENCH数据集,涵盖411种犯罪类型和120万案例,并开发了能直接生成关键法律要素的检索模型。实验表明,该模型在准确率上超越传统方法6-20%,且在未见犯罪类型上展现出强大泛化能力。这一突破为法律专业人士提供了更高效、精准的案例检索工具。