微信扫一扫,关注公众号

  • 科技行者

  • 算力行者

见证连接与计算的「力量」

首页 “AlphaGo之父”发布Twitter证实Master真实身份

“AlphaGo之父”发布Twitter证实Master真实身份

2017-01-05 10:35
分享至:
----..---.-...-/--...-.-......./-...-....-..--../-............-.- ----..---.-...-/--...-.-......./-...-....-..--../-............-.- ----..---.-...-/--...-.-......./-...-....-..--../-............-.- ----..---.-...-/--...-.-......./-...-....-..--../-............-.-
2017-01-05 10:35 德克

北京时间1月5日消息,谷歌DeepMind开发的AI在围棋棋盘上战胜韩国世界冠军之后再度重返,这一次AlphaGo在网上战胜了顶尖棋手,而且是悄悄进行的。

DeepMind创始人哈撒比斯(左一)与李世石握手

DeepMind创始人哈撒比斯(左一)与李世石握手

今天早些时候,谷歌DeepMind创始人丹米斯·哈撒比斯(Demis Hassabis)在Twitter发布消息,证实升级版AlphaGo在网上与真人对决。

哈撒比斯写道:“在过去几天里,我们在网上进行了一些非正式围棋比赛,对局以快棋的形式进行……我们的目的只是为了查看系统是否如预期一样好。”他还说:“感谢那些在弈城围棋网和野狐围棋网与我们对弈的棋手,我们的账号是Magister(P) 和Master(P),我们还要感谢那些观战的人。”

之前许多人都在猜测这位围棋高手是谁,大家都不确定,有人怀疑它是电脑。中国棋手古力悬赏10万元,寻找可以打败“Master”的棋手。

DeepMind发布的消息显示,非正式测试可能已经结束,今年晚些时候,AlphaGo将会参加一些正式比赛。

附哈撒比斯发布的最新声明:

一直以来,我们都在努力改进AlphaGo,在过去几天里,我们进行了一些非正式网上比赛,对局以快棋的形式进行,参加比赛的是最新开发的原型版系统,进行网上对决只是为了检查系统,看它是不是和预料的一样好。感谢那些在弈城围棋网和野狐围棋网与我们对弈的棋手,我们的账号是Magister(P) 和Master(P),我们还要感谢那些观战的人。

新版AlphaGo在比赛中下出了一些富有创意、非常漂亮的棋步,我们和围棋社区从中学到了许多东西,对此我们感到很兴奋,结果让人满意。

与AlphaGo对弈之后,棋手古力发帖称:“人类与AI携手合作,很快将会揭开围棋的深层秘密。”现在我们的非正式测试已经结束,今年我们准备与围棋组织、专家合作,举办正式、完整的比赛,进一步探索围棋的秘密,让人类与AI互相启迪,共同进步。很快我们就会公布更多消息。

分享至
0赞

好文章,需要你的鼓励

推荐文章
  • 奖励设计:让AI学会智能使用工具的关键
    2025-04-23 17:39

    奖励设计:让AI学会智能使用工具的关键

    想象一下,你有一个非常聪明的朋友,他知道很多知识,但每当需要使用计算器、搜索引擎或查询最新天气时,却变得像个笨手笨脚的孩子。这正是当前大语言模型(简称LLMs,如ChatGPT这类AI系统)面临的尴尬处境。

  • ToolRL:奖励设计是工具学习所需的全部
    2025-04-23 17:34

    ToolRL:奖励设计是工具学习所需的全部

    想象一下,你拥有一个聪明的助手,它知道很多知识,但在面对需要使用计算器、搜索引擎或查询最新信息时却显得笨手笨脚。这正是当前大语言模型(LLMs)面临的困境。虽然这些模型已经通过监督微调(SFT)学会了使用工具的基本能力,但它们常常在面对复杂或不熟悉的场景时表现不佳。

  • X-Teaming:使用自适应多智能体进行多轮越狱攻击和防御
    2025-04-23 14:08

    X-Teaming:使用自适应多智能体进行多轮越狱攻击和防御

    想象你正在和一个智能助手聊天。如果你直接要求它提供有害信息,它很可能会礼貌拒绝。但如果你通过一系列看似无害的对话,逐步引导它走向你的真实目标呢?这就是当前AI安全领域面临的一个严峻挑战——多轮对话中的安全漏洞。

  • "思考操纵":用外部思考让大型推理模型更高效
    2025-04-22 16:43

    "思考操纵":用外部思考让大型推理模型更高效

    想象你在使用一个非常聪明的AI助手完成一项复杂任务,比如解决一道数学难题。你可能注意到这个助手会花很长时间"思考",一步一步写下大量推理过程,最后才给出答案。虽然这种详细的思考过程确实帮助AI做出了更准确的判断,但同时也带来了一个明显的问题:它太"啰嗦"了,消耗了大量的计算资源和时间。

----..---.-...-/--...-.-......./-...-....-..--../-............-.- ----..---.-...-/--...-.-......./-...-....-..--../-............-.- ----..---.-...-/--...-.-......./-...-....-..--../-............-.- ----..---.-...-/--...-.-......./-...-....-..--../-............-.-