北京时间1月5日消息,谷歌DeepMind开发的AI在围棋棋盘上战胜韩国世界冠军之后再度重返,这一次AlphaGo在网上战胜了顶尖棋手,而且是悄悄进行的。
DeepMind创始人哈撒比斯(左一)与李世石握手
今天早些时候,谷歌DeepMind创始人丹米斯·哈撒比斯(Demis Hassabis)在Twitter发布消息,证实升级版AlphaGo在网上与真人对决。
哈撒比斯写道:“在过去几天里,我们在网上进行了一些非正式围棋比赛,对局以快棋的形式进行……我们的目的只是为了查看系统是否如预期一样好。”他还说:“感谢那些在弈城围棋网和野狐围棋网与我们对弈的棋手,我们的账号是Magister(P) 和Master(P),我们还要感谢那些观战的人。”
之前许多人都在猜测这位围棋高手是谁,大家都不确定,有人怀疑它是电脑。中国棋手古力悬赏10万元,寻找可以打败“Master”的棋手。
DeepMind发布的消息显示,非正式测试可能已经结束,今年晚些时候,AlphaGo将会参加一些正式比赛。
附哈撒比斯发布的最新声明:
一直以来,我们都在努力改进AlphaGo,在过去几天里,我们进行了一些非正式网上比赛,对局以快棋的形式进行,参加比赛的是最新开发的原型版系统,进行网上对决只是为了检查系统,看它是不是和预料的一样好。感谢那些在弈城围棋网和野狐围棋网与我们对弈的棋手,我们的账号是Magister(P) 和Master(P),我们还要感谢那些观战的人。
新版AlphaGo在比赛中下出了一些富有创意、非常漂亮的棋步,我们和围棋社区从中学到了许多东西,对此我们感到很兴奋,结果让人满意。
与AlphaGo对弈之后,棋手古力发帖称:“人类与AI携手合作,很快将会揭开围棋的深层秘密。”现在我们的非正式测试已经结束,今年我们准备与围棋组织、专家合作,举办正式、完整的比赛,进一步探索围棋的秘密,让人类与AI互相启迪,共同进步。很快我们就会公布更多消息。
好文章,需要你的鼓励
这项研究利用大语言模型解决科学新颖性检测难题,南洋理工大学团队创新性地构建了闭合领域数据集并提出知识蒸馏框架,训练轻量级检索器捕捉想法层面相似性而非表面文本相似性。实验表明,该方法在市场营销和NLP领域显著优于现有技术,为加速科学创新提供了有力工具。
un?CLIP是一项创新研究,通过巧妙反转unCLIP生成模型来增强CLIP的视觉细节捕捉能力。中国科学院研究团队发现,虽然CLIP在全局图像理解方面表现出色,但在捕捉细节时存在不足。他们的方法利用unCLIP生成模型的视觉细节表示能力,同时保持与CLIP原始文本编码器的语义对齐。实验结果表明,un?CLIP在MMVP-VLM基准、开放词汇语义分割和视觉中心的多模态任务上显著优于原始CLIP和现有改进方法,为视觉-语言模型的发展提供了新思路。
这项研究介绍了RPEval,一个专为评估大语言模型角色扮演能力而设计的新基准。研究团队从法国里尔大学开发的这一工具专注于四个关键维度:情感理解、决策制定、道德对齐和角色一致性,通过单轮交互实现全自动评估。研究结果显示Gemini-1.5-Pro在总体表现上领先,而GPT-4o虽在决策方面表现出色,但在角色一致性上存在明显不足。这一基准为研究人员提供了一个可靠、可重复的方法来评估和改进大语言模型的角色扮演能力。
这篇论文介绍了LegalSearchLM,一种创新的法律案例检索方法,将检索任务重新定义为法律要素生成。研究团队构建了LEGAR BENCH数据集,涵盖411种犯罪类型和120万案例,并开发了能直接生成关键法律要素的检索模型。实验表明,该模型在准确率上超越传统方法6-20%,且在未见犯罪类型上展现出强大泛化能力。这一突破为法律专业人士提供了更高效、精准的案例检索工具。