CNET科技资讯网 5月26日 北京消息: 5月26日,在贵阳数博会“机器智能”高峰对话上,全球IT届的多位领军人物就MI(机器智能)与AI(人工智能)的区别展开激烈讨论。
“只要创造出关于动物和人的智能,都可以叫做人工智能。但人与动物不具备的智能,如果机器具备了,那就是机器智能,这是我的理解。”阿里巴巴技术委员会主席王坚说。
王坚举例说,最常见的人工智能就是创造一个聊天机器人,基本上是过去人能做的事情。但是去年我们给杭州装一个城市大脑,那是一个人也不具备的智能,我觉得更适合机器智能。
美国硅谷著名创业家、天使投资人史蒂夫·霍夫曼认为,AI是拿图灵测试作为定义,能与人进行互动通过图灵测试的都是AI。MI会是人机共生的核心点,我希望在有生之年能看到MI无处不在。因为今天我所做的很多决定,如果有MI辅助,我可以作出更好的决定,这让每个人未来可以发挥潜力。“我是写书的,写每一本书的时候要做大量的研究工作,如果有MI帮我收集信息、整理信息,把最相关的信息提取出来,我可以用更短时间写出更有水平的书。”
斯坦福大学人工智能与伦理学教授杰瑞·卡普兰认为,机器智能不应该认为它是让机器变得像人一样有智慧,应该看成是新一代的自动化。它不是来取代人,它是来辅助人,还会有大量的工作岗位,现在就有很多工作岗位不能靠自动化来取代,这个技术它会改变工作的性质,让我们工作变得更加高效。如果从这个视角来理解,机器智能是自动化的延伸。
北京大数据研究院院长鄂维南认为,机器智能的核心是会学习的机器,它将会把我们带入智能化社会,就像当年造出了会劳动的机器把我们代入了工业化社会一样。
机器智能如此无所不能,是否会取代人类?对此,王坚打了一个有趣的比喻:“我们拿一条狗让它去找毒品的时候从来没有说过我们的鼻子被狗的鼻子给取代了。”他认为,我们要尊重机器在某些方面的能力超越人类。
好文章,需要你的鼓励
过去十年,终端厂商比拼的是“性能”和“参数”,如今,竞争的焦点正转向“智能程度”。
Fractal AI Research实验室开发了Fathom-DeepResearch智能搜索系统,该系统由两个4B参数模型组成,能够进行20多轮深度网络搜索并生成结构化报告。研究团队创新了DUETQA数据集、RAPO训练方法和认知行为奖励机制,解决了AI搜索中的浅层化、重复性和缺乏综合能力等问题,在多项基准测试中显著超越现有开源系统,为AI助手向专业研究工具转变奠定了基础。
快手科技与清华大学合作发现当前AI语言模型训练中存在严重的权重分配不平衡问题,提出了非对称重要性采样策略优化(ASPO)方法。该方法通过翻转正面样本的重要性权重,让模型把更多注意力放在需要改进的部分而非已经表现良好的部分,显著提升了数学推理和编程任务的性能,并改善了训练稳定性。