
“数字视频时-空自适应处理关键技术及应用”获2007年度国家技术发明二等奖;提出图像分析和视觉知识描述新方法,为构造计算机视觉系统和基于图像信息的智能控制系统,提供了理论指导和关键技术。郑南宁完成“精密装配机器人机器视觉系统”研究,获1996年国家科技进步奖二等奖。发明了一种图像边缘曲线拟合的新方法,获1995年国家发明奖四等奖。“高性能机器视觉及车型与牌照自动识别系统”获1991年国家科技进步奖二等奖。提出在线交互式立体测深方法,研制出“X线数字减影血管造影系统”及“DSA1250数字减影血管造影系统”。研制出具有自主知识产权的数字电视扫描制式转换及视频处理芯片;获已授权的中国发明专利七项。发表论文100余篇,著作2部。2017年10月,郑南宁当选首批中国人工智能学会会士。
好文章,需要你的鼓励
谷歌DeepMind等顶级机构联合研究揭示,当前12种主流AI安全防护系统在面对专业自适应攻击时几乎全部失效,成功率超过90%。研究团队通过强化学习、搜索算法和人类红队攻击等多种方法,系统性地突破了包括提示工程、对抗训练、输入过滤和秘密检测在内的各类防护技术,暴露了AI安全评估的根本缺陷。
西蒙弗雷泽大学和Adobe研究院联合开发的MultiCOIN技术,能够将两张静态图片转换为高质量的过渡视频。该技术支持轨迹、深度、文本和区域四种控制方式,可单独或组合使用。采用双分支架构和分阶段训练策略,在运动控制精度上比现有技术提升53%以上,为视频制作提供了前所未有的灵活性和精确度。
英国国王学院研究团队开发了潜在精炼解码(LRD)技术,解决了AI文本生成中的速度与准确性平衡难题。该方法通过两阶段设计模仿人类思考过程:先让AI在连续空间中"深思熟虑",保持多种可能性的混合状态,然后"果断行动",逐步确定答案。实验显示,LRD在编程和数学推理任务中准确性提升最高6.3个百分点,生成速度提升最高10.6倍,为AI并行文本生成开辟了新路径。
清华大学团队开发的ViSurf是一种创新的大型视觉语言模型训练方法,巧妙融合了督导式学习和强化学习的优势。该方法通过将标准答案整合到强化学习过程中,让AI既能从正确答案中学习又能保持自主推理能力。实验显示ViSurf在多个视觉任务上显著超越传统方法,特别是在处理模型知识盲区时表现突出,同时有效避免了灾难性遗忘问题,为AI训练提供了更高效稳定的新范式。