“数字视频时-空自适应处理关键技术及应用”获2007年度国家技术发明二等奖;提出图像分析和视觉知识描述新方法,为构造计算机视觉系统和基于图像信息的智能控制系统,提供了理论指导和关键技术。郑南宁完成“精密装配机器人机器视觉系统”研究,获1996年国家科技进步奖二等奖。发明了一种图像边缘曲线拟合的新方法,获1995年国家发明奖四等奖。“高性能机器视觉及车型与牌照自动识别系统”获1991年国家科技进步奖二等奖。提出在线交互式立体测深方法,研制出“X线数字减影血管造影系统”及“DSA1250数字减影血管造影系统”。研制出具有自主知识产权的数字电视扫描制式转换及视频处理芯片;获已授权的中国发明专利七项。发表论文100余篇,著作2部。2017年10月,郑南宁当选首批中国人工智能学会会士。
好文章,需要你的鼓励
AIM Intelligence联合多所知名大学揭示了音频AI系统的重大安全漏洞,开发出名为WhisperInject的攻击方法。这种攻击能让看似无害的音频指令操控AI生成危险内容,成功率超过86%,完全绕过现有安全机制。研究暴露了多模态AI系统的系统性安全风险,对全球数十亿智能设备构成潜在威胁。
新加坡国立大学研究团队系统梳理了视觉强化学习领域的最新进展,涵盖超过200项代表性工作。研究将该领域归纳为四大方向:多模态大语言模型、视觉生成、统一模型框架和视觉-语言-动作模型,分析了从RLHF到可验证奖励范式的政策优化策略演进,并识别出样本效率、泛化能力和安全部署等关键挑战,为这一快速发展的交叉学科提供了完整的技术地图。
浙江大学研究团队通过OmniEAR基准测试揭示了当前AI模型在物理世界推理方面的严重缺陷。测试显示,即使最先进的AI在明确指令下能达到85-96%成功率,但面对需要从物理约束推断行动的任务时,成功率骤降至56-85%。研究发现信息过载反而降低AI协作能力,监督学习虽能改善单体任务但对多智能体协作效果甚微,表明当前架构存在根本局限性。
纽约大学和Aimpoint Digital Labs的研究团队首次揭示了Transformer模型训练中"大规模激活"的完整发展轨迹。这些影响力比普通激活大千倍的"超级激活"遵循可预测的数学规律,研究者开发出五参数公式能以98.4%准确率预测其变化。更重要的是,通过调整模型架构参数如注意力密度、宽深比等,可以在训练前就预测和控制这些关键激活的行为,为设计更高效、量化友好的AI模型提供了全新工具。