企业利用数据分析的主要方向之一,就是规划业务和优化运营——这一直是“运营研究”分析方法的长期重点。然而这通常在一个相对较小的范围内完成,仅仅使用少数变量的单个模型。现在,认知工具(Cognitive tools)——特别是机器学习——可以让这个用途在广度和深度上更上一层楼。
人工智能在制造和运营方面的作用可能不为人所知,但是我们有机会使用这些工具来显着提高重要行业的效率和有效性。以美国大河特种钢铁厂“Big River Steel”为例,这家大型钢铁制造企业正试图在最具工业特性的行业内进行重大转型。Big River Steel的先例告诉钢铁行业,机器学习同样适用它们。
位于美国阿肯色州的Big River Steel广泛使用传感器、控制系统和基于机器学习的优化。通过与人工智能咨询公司Noodle.ai合作,Big River Steel开发了多种技术来提高炼钢的实践和利润。Big River Steel首席执行官David Stickler经常表示:“我们是一家在生产钢铁的科技公司。”
Big River Steel在以下6个主要方面使用机器学习,尽管每个方面在应用成熟度上有所不同:
· 需求预测:Big River Steel通过明智地使用资金而取得成功,所以它需要准确预测钢铁需求。要做到这一点,就采用具有宏观经济数据、钢铁的历史需求、制造业动态、钢铁大客户的动态(例如住房开工、石油钻台数量)的机器学习模式。
· 资源开发和库存管理:和小型钢铁厂一样,Big River Steel的原材料是废钢,所以需要预测其可用性。Noodle.ai开发了“废钢指数”,并正在与Big River Steel合作,采取对冲方式购买废钢。
· 调度优化:什么时候生产什么,这是任何钢铁厂都要做出的重要决定,特别是当你最重要的投入是电能(用于熔炼废钢的电弧炉)时,就更加关键了。优化模型能使非高峰时间的能源消耗最大化,从而使能源成本最小化。
· 生产优化:所有钢厂都有非计划事件,如漏钢(当铸造时钢水从铸模中脱落)和堆钢事故(当热轧钢从辊子掉到磨机地板上时)。这些事件会使生产停滞,既危险又要付出成本代价。机器学习模型可以预测何时最有可能发生事故,并最大程度减少事故的发生。
· 预测性维护:随着工业机器数量的增加,Big River Steel可以使用机器学习模型来确定维护关键机器和设备的最佳时间。
· 出站运输优化:像亚马逊这样的公司一直在优化他们的出站供应链,但这在钢铁厂很少见。 Big River Steel与客户和托运人合作,将出站运输的成本降到最低,并优化客户交付窗口。
有了这些应用,Big River Steel和其他公司改善的运营能力,但最有价值的好处来自于整合。Big River Steel正在试图为工厂的业绩和盈利能力进行“端到端”优化,已经具有不同模型将业务计划和运营的不同部分进行互连,并且在整个企业中进行优化。
这种规划和优化的综合方法仍处于早期阶段,细化的话还需要更多的数据、算法的调整和大量的计算能力。但是Stickler和Noodle.ai的数据科学家都相信这是可以实现的。
好文章,需要你的鼓励
北航团队推出Easy Dataset框架,通过直观的图形界面和角色驱动的生成方法,让普通用户能够轻松将各种格式文档转换为高质量的AI训练数据。该工具集成了智能文档解析、混合分块策略和个性化问答生成功能,在金融领域实验中显著提升了AI模型的专业表现,同时保持通用能力。项目已开源并获得超过9000颗GitHub星标。
卢森堡计算机事件响应中心开发的VLAI系统,基于RoBERTa模型,能够通过阅读漏洞描述自动判断危险等级。该系统在60万个真实漏洞数据上训练,准确率达82.8%,已集成到实际安全服务中。研究采用开源方式,为网络安全专家提供快速漏洞风险评估工具,有效解决了官方评分发布前的安全决策难题。
中国电信研究院等机构联合开发的xVerify系统,专门解决复杂AI推理模型的评估难题。该系统能够准确判断包含多步推理过程的AI输出,在准确率和效率方面均超越现有方法,为AI评估领域提供了重要突破。
昆仑公司Skywork AI团队开发的Skywork R1V模型,成功将文本推理能力扩展到视觉领域。该模型仅用380亿参数就实现了与大型闭源模型相媲美的多模态推理性能,在MMMU测试中达到69.0分,在MathVista获得67.5分,同时保持了优秀的文本推理能力。研究团队采用高效的多模态迁移、混合优化框架和自适应推理链蒸馏三项核心技术,成功实现了视觉理解与逻辑推理的完美结合,并将所有代码和权重完全开源。