如果没有神经网络,近年来人工智能取得的一系列突破——包括面部识别与自然语言处理系统等——将根本无法真正实现。
所谓神经网络,指的是能够摄取大量数据并对其内容加以理解的、众多紧密连接的处理单元。然而,此类神经网络的进一步扩展,则在硬件层面面临着严重制约——具体来讲,其对硬件资源的严苛要求意味着相关设备只能以远程方式存在于数据中心之内。
几乎任何设备都能够访问该硬件,数据将被上传至远端服务器,而后接受处理并将结果发送回客户设备处。之所以需要采用这样的方式,是因为神经网络往往需要巨大的电力供应,因此并不适用于智能扬声器或者工业传感器等低功耗智能手机及其它日常处理设备。当然,这种作法的弊端在于数据需要耗费一定时间才能完成由本地设备到云端的传输,这意味着,神经网络在相当一部分特定应用场景当中根本无法实现。
如今,麻省理工学院的研究人员们表示,他们可以使用一种新型芯片来解决这个问题——该芯片能够立足现场执行一切必要的数据处理任务。研究人员们于本周二宣称:“新芯片相较于标准处理器可实现95%的能源效率提升,因此可被集成至小型电池供电设备当中,以进行边缘网络计算。”
为了实现这一种显示的能源效率提升效果,负责领导新芯片开发工作的麻省理工学院电气工程与计算机科学研究生Avishek Biswas利用到了神经网络处理当中的所谓“点积”特性。
Biswas称,“通用型处理器模型是在芯片中的某一部分安置存储器,芯片的另一部分则设有处理器。当需要进行计算操作时,数据需要在二者之间往来移动。”而这种数据往来移动正是令神经网络功耗激增的主要根源。
“不过一种特殊运算确实能够对这些算法的处理过程加以简化,这就是点积运算(dot product)。我们的方法,本质是在思考能否在内存当中实现这种点积能力,从而避免数据的往来移动。”
Biswas和他的同事们构建起一款模拟人类大脑的处理器,其相较于以往设计能够更可靠地实现这一目标。其原型芯片可以同时计算16个点积,且与传统神经网络相比计算精度仅下降2%至3%。
IBM公司人工智能部门副总裁Dario Gil也参与到该项目当中,他表示这一实验结果“必然能够在未来实现在物联网当中使用更复杂的卷积神经网络,从而进行图像与视频内容分类这一重要目标。”
siliconangle.com
作者:MIKE WHEATLEY
编译:科技行者
好文章,需要你的鼓励
这项研究提出了"高效探测"方法,解决了掩码图像建模AI难以有效评估的问题。通过创新的多查询交叉注意力机制,该方法在减少90%参数的同时实现10倍速度提升,在七个基准测试中均超越传统方法。研究还发现注意力质量与分类性能的强相关性,生成可解释的注意力图谱,展现出优异的跨域适应性。团队承诺开源全部代码,推动技术普及应用。
伊利诺伊大学研究团队开发了CLAIMSPECT系统,通过层次化分解复杂争议、智能检索相关文献、多角度收集观点的方法,将传统的"真假"判断转变为多维度分析。该系统能够自动构建争议话题的分析框架,识别不同观点及其支撑证据,为科学和政治争议提供更全面客观的分析,已在生物医学和国际关系领域验证有效性。
清华大学研究团队首次提出情感认知融合网络(ECFN),让AI能像人类一样理解和表达情感。该系统通过多层次情感处理架构,在情感识别准确率上比现有最佳系统提升32%,情感表达自然度提升45%。研究突破了传统AI情感理解的局限,实现了跨模态情感融合、动态情感追踪和个性化情感建模,为医疗、教育、客服等领域带来革命性应用前景。
哈佛大学研究团队通过创新的多智能体强化学习方法,让AI在战略游戏中学会复杂推理。研究发现AI通过游戏竞争能发展出类人思维能力,在逻辑推理、创造性解决问题等方面表现显著提升。这项突破性成果为未来AI在医疗、教育、城市管理等领域的应用奠定基础,展现了通过模拟人类学习过程培养真正智能AI的新路径。