微信扫一扫,关注公众号

  • 科技行者

  • 算力行者

见证连接与计算的「力量」

首页 知识图谱如何改变银行业务模式?

知识图谱如何改变银行业务模式?

2020-03-13 19:41
分享至:
----..---.-...-/--...-.-......./-...-....-..--../-............-.- ----..---.-...-/--...-.-......./-...-....-..--../-............-.- ----..---.-...-/--...-.-......./-...-....-..--../-............-.- ----..---.-...-/--...-.-......./-...-....-..--../-............-.-
2020-03-13 19:41 科技行者

预计到2030年为金融行业节省超过1万亿美元。

面对机遇,很多银行开始采取行动。但是如何才能最大程度地利用人工智能技术呢?

这时候,银行就面对着同样一个严峻的现实:要想成功部署人工智能应用,光有海量的数据还不够。对于人工智能交付结果而言,数据质量起到了重要的作用,这正是绝大多数组织都在努力解决的难题。

在过去几十年内,各大银行一直在收集数据,因此,数据管理变得极为复杂。数据通常是断续的,并且以不同的格式存储,整个组织布满了无法使用的孤立信息数据库,这使得全银行范围内的研究难以开展,人工智能应用也无法从数据中发现见解。

)」——亚马逊、谷歌和苹果公司等巨头使用的一项技术——可以连接不同的数据库,让它们变得可供搜索。知识图谱还可以连接结构化和非结构化数据,使人工智能应用不仅可以使用内部数据库的信息,还可以使用文本等文档中的信息。

「知识图谱」如何起作用?

知识图谱是知识领域的模型。它映射了企业的所有业务对象和概念,以及它们之间的相互关系。知识图谱被构造为附加的虚拟数据层,位于现有数据库之上,并将数据大规模链接在一起。电子表格等结构化数据,以及文本文档等非结构化数据,都是知识图谱连接的对象。

知识图谱基于知识和概念,因此要想创建良好的知识图谱,必须让整个组织内不同领域的主题专家都参与进来。这增加了对协作的需求,并加强了知识管理领域的共同责任和透明度。而且,由于该技术并不会取代现有的IT系统,而是对它们进行加强,因此具有极高的成本效益。

)定义了金融业务应用程序中有趣的一组业务对象,以及它们之间的相互关系。通过使用FIBO,组织可以使任何描述财务业务的数据变得有意义。

使用语义人工智能的个性化银行服务

知识图谱、自然语言处理(NLP)和人工智能的结合,对于银行业的数字化转型将是至关重要的。

一种特别有趣的趋势是,使用该技术来改善个性化的客户服务。这可以通过使用知识图谱构建推荐系统来完成,在线商店也经常使用类似的推荐系统向用户展示相关产品。

)——蓝纹奶酪中最富盛名的一种,尽管绝大部分的推荐系统可能会向这位用户推荐其他类型的蓝纹奶酪,但是得到知识图谱支持的推荐系统则可能会技高一筹,它可能会推荐一款与特定类型奶酪搭配的葡萄酒。

——在这种情况下,奶酪和葡萄酒及其所有属性,可提供丰富的、额外的语境信息——这会让建议的质量有所不同。

很多银行都在自助服务门户中部署该技术,向客户显示个性化的信息视图,例如新产品和服务。同样,他们还在在线门户中使用知识图谱,以提高客户的金融知识。这些是通过构建数字化助手来实现的,可以帮助客户通过知识中心的语义搜索获得金融知识。

)通过其语义人工智能搜索引擎,帮助客户和分析师们更快地做出更明智的决定。该平台能够快速、高质量地检索大量信息,并提供基于语境的高质量结果。它让客户和分析师能够只关注他们需要的信息,并且提供个性化视觉分析。

),出于多种原因考虑,该行正努力实施知识图以支持其人工智能策略,通过关系发现、内容语境化、以及对数据含义的更好理解,对内容进行自动充实。

但是,银行服务的个性化只是银行业中众多的技术趋势之一。我们还看到该技术出现在与合规性、欺诈检测、风险评估、租赁协议甚至贷款申请等相关的事务中。在所有这些用例中,知识图谱对于实现最佳结果至关重要。

)或“客户360”,它还涉及使用客户的链接和整体视图,丰富语境信息,以便能够进行准确的交流、做出明智的决策、或汇总准确的产品报价。

如何开始利用语义人工智能?

要开始使用语义人工智能,各大银行应该首先定义出具有特定目标的具体用例。通过执行已定义的项目,组织可以了解该技术的全部潜力,并找到应用该技术的其他机会,并最终在整个组织内部署该技术。

因此,有必要在单个用例的基础上评估知识图谱的有用性,同时建立足够的知识,以便在更全面的人工智能策略中纳入这种方法论。

在选择用于管理企业知识图谱的软件时,你应该寻找一种基于标准的解决方案,它既可以与你当前使用的架构互操作,可扩展,且易于学习。引入语义人工智能的最大瓶颈已经不再是技术,而是那些不愿意相信它可以长期为自己服务的人们。

分享至
0赞

好文章,需要你的鼓励

推荐文章
  • 奖励设计:让AI学会智能使用工具的关键
    2025-04-23 17:39

    奖励设计:让AI学会智能使用工具的关键

    想象一下,你有一个非常聪明的朋友,他知道很多知识,但每当需要使用计算器、搜索引擎或查询最新天气时,却变得像个笨手笨脚的孩子。这正是当前大语言模型(简称LLMs,如ChatGPT这类AI系统)面临的尴尬处境。

  • ToolRL:奖励设计是工具学习所需的全部
    2025-04-23 17:34

    ToolRL:奖励设计是工具学习所需的全部

    想象一下,你拥有一个聪明的助手,它知道很多知识,但在面对需要使用计算器、搜索引擎或查询最新信息时却显得笨手笨脚。这正是当前大语言模型(LLMs)面临的困境。虽然这些模型已经通过监督微调(SFT)学会了使用工具的基本能力,但它们常常在面对复杂或不熟悉的场景时表现不佳。

  • X-Teaming:使用自适应多智能体进行多轮越狱攻击和防御
    2025-04-23 14:08

    X-Teaming:使用自适应多智能体进行多轮越狱攻击和防御

    想象你正在和一个智能助手聊天。如果你直接要求它提供有害信息,它很可能会礼貌拒绝。但如果你通过一系列看似无害的对话,逐步引导它走向你的真实目标呢?这就是当前AI安全领域面临的一个严峻挑战——多轮对话中的安全漏洞。

  • "思考操纵":用外部思考让大型推理模型更高效
    2025-04-22 16:43

    "思考操纵":用外部思考让大型推理模型更高效

    想象你在使用一个非常聪明的AI助手完成一项复杂任务,比如解决一道数学难题。你可能注意到这个助手会花很长时间"思考",一步一步写下大量推理过程,最后才给出答案。虽然这种详细的思考过程确实帮助AI做出了更准确的判断,但同时也带来了一个明显的问题:它太"啰嗦"了,消耗了大量的计算资源和时间。

----..---.-...-/--...-.-......./-...-....-..--../-............-.- ----..---.-...-/--...-.-......./-...-....-..--../-............-.- ----..---.-...-/--...-.-......./-...-....-..--../-............-.- ----..---.-...-/--...-.-......./-...-....-..--../-............-.-