自从人工智能诞生以来,研究人员们一直试图通过让机器人与人类玩游戏来测试机器系统的智能水平。人们通常认为,人类智慧的一大标志,就在于具备创造性思考的能力——考虑多种多样的可能性,并在制定短期决策的同时牢记长期目标。如果计算机能够像人类一样解决困难的游戏,那么它们肯定可以处理更为复杂的任务。从上世纪五十年代出现的早期跳棋机器人,到如今得到深度学习技术加持的新AI,智能系统已经能够在国际象棋、围棋以及《DOTA》等游戏中击败全球顶尖人类选手。从这个角度来看,单纯依靠解决谜题的能力来判断机器智能水平的思路已经过时。要衡量AI的极限,我们还得找到更靠谱的方法。
因此,组织开发AI方案时采取的一大核心模式,正是目标驱动型系统模式。与其他AI模式一样,这种形式的AI能够解决一系列原本需要人类认知能力才能处理的常见问题。在这种特定模式下,机器的任务非常明确——找到解决问题的最佳途径。具体问题可能是找到顺利穿过迷宫的路径、优化供应链或者优化驾驶路线与空闲时间。无论实际需求如何,我们对AI系统的期望都是通过反复试验完成学习,并找到解决问题的最佳(即使直观度很低)方法。
强化学习与实验试错学习
强化学习是目前使用比例不高、但却最为有趣的机器学习形式之一。与监督学习方法(人类首先对数据做出标记,再由机器利用标记数据完成学习)或者无监督学习方法(由机器自主尝试对信息进行分组与聚类,借此完成学习)相反,强化学习主要通过实验试错的方式进行学习,并在迭代当中不断匹配环境反馈与总体目标,最终达成理想性能。
在不使用AI的情况下,组织需要依靠人类建立基于程序与规则的系统,借此指导软件与硬件系统的运作流程。程序与规则虽然能够有效管理资金、人员、时间以及其他多种资源类型,但往往存在严重的脆弱与僵化局限。这些系统的能力上限,被牢牢束缚在人类所制定规则的水平身上;换句话说,这类机器根本无法真正学习,而只是将人类智能以规则的形式重新理解,并借此保证系统的正常工作。
也正因为如此,目标驱动型系统才在需要进行资源优化的领域当中迸发出巨大的能量。
如此一来,尽管目标驱动型系统模式在普及度方面不及其他模式(例如识别、预测分析或者对话模式),但却在众多行业中显示出巨大的发展潜力。
除此之外,训练物理机器人、创造可指挥机器人行走及跳跃的算法等也都是目标驱动系统模式的理想施展舞台。
这些系统能够选择最佳试剂与反应参数,设计出所需产品,这种强大的能力也使其成为高度复杂的药物或治疗流程中的新型资产。
目标驱动型系统模式能否成为实现人工通用智能(AGI)的关键?
“通用智能”的概念类似于人类大脑,这意味着人工通用智能不再像当前已经存在的真实AI系统那样只能专注于狭窄的单一学习任务,而能够学习到一切知识并将经验心得从一个领域转移到另一个领域——期间无需进行大量重新训练。
从零开始,以提高胜率作为唯一目标,AlphaZero在多达100款测试游戏中均将AlphaGo斩于马下。
此外,人们还在利用这些技术开发强大的通用学习算法,也许人工通用智能领域的真正突破再有几年就会初现端倪。
很明显,单靠这样的暴力手段,我们永远不可能实现人工通用智能。
凭借着光明的发展前景,它也成为其中最有趣、最值得期待的模式之一。
好文章,需要你的鼓励
AIM Intelligence联合多所知名大学揭示了音频AI系统的重大安全漏洞,开发出名为WhisperInject的攻击方法。这种攻击能让看似无害的音频指令操控AI生成危险内容,成功率超过86%,完全绕过现有安全机制。研究暴露了多模态AI系统的系统性安全风险,对全球数十亿智能设备构成潜在威胁。
新加坡国立大学研究团队系统梳理了视觉强化学习领域的最新进展,涵盖超过200项代表性工作。研究将该领域归纳为四大方向:多模态大语言模型、视觉生成、统一模型框架和视觉-语言-动作模型,分析了从RLHF到可验证奖励范式的政策优化策略演进,并识别出样本效率、泛化能力和安全部署等关键挑战,为这一快速发展的交叉学科提供了完整的技术地图。
浙江大学研究团队通过OmniEAR基准测试揭示了当前AI模型在物理世界推理方面的严重缺陷。测试显示,即使最先进的AI在明确指令下能达到85-96%成功率,但面对需要从物理约束推断行动的任务时,成功率骤降至56-85%。研究发现信息过载反而降低AI协作能力,监督学习虽能改善单体任务但对多智能体协作效果甚微,表明当前架构存在根本局限性。
纽约大学和Aimpoint Digital Labs的研究团队首次揭示了Transformer模型训练中"大规模激活"的完整发展轨迹。这些影响力比普通激活大千倍的"超级激活"遵循可预测的数学规律,研究者开发出五参数公式能以98.4%准确率预测其变化。更重要的是,通过调整模型架构参数如注意力密度、宽深比等,可以在训练前就预测和控制这些关键激活的行为,为设计更高效、量化友好的AI模型提供了全新工具。