
新冠疫情的流行,迫使我们进一步加大对于技术、在线活动以及人工智能的依赖性。其中AI对企业而言尤其重要,其能够大规模实现个性化服务,同时满足客户不断提高体验需求。
但是,大部分企业并不具备实现AI所需要的知识或工具,甚至没有体会到转型为AI驱动型企业的核心诉求。在本文中,我们将从AI部署方法角度出发,聊聊如何解决这些实际问题。
首先需要强调的是,虽然后文中提到的很多方法都以无代码为重点,但其同样适用于开发人员,有助于显著提升开发速度。
变革型AI
自从学习编程以来,我发现很多人都希望开发出一种使用简单英语命令创建应用程序的工具。多年之后,伴随着一代双一代代码编写文本生成器与HTML标记演示,我们最终迎来了与理想最为接近的解决方案——OpenAI的GPT-3。
GPT-3的全称为生成式预训练Transformer 3,能够利用大量数据对AI算法进行训练,而后利用内置知识以极低甚至趋近于零的新增训练量在新任务中带来惊人的性能表现。GPT-3使用大量数据训练而成,其中包括Common Crawl与维基百科。更重要的是,这是一套由超级计算机训练而成的模型,令人叹为观止的1750亿个参数也使其成为迄今为止体量最大的AI模型。
这意味着AI算法能够运用固有的知识,随时针对具体任务需求做出转变。变革型AI拥有众多核心优势——与从零开始进行模型开发相比,其时间周期更短、实际效果也更高。此外,变革型AI还降低了人工智能技术的使用门槛,企业只需要与模型共享特定数据,即可生成适合自己的模型方案。例如,Anyline的无代码AI训练程序可以帮助企业构建自己的文本阅读器解决方案(例如ID扫描仪或车牌读取器)。客户只需要将自己的数据上传至训练程序,训练器就会自动进行神经网络调整,借此生成定制化OCR扫描程序。
换句话说,用户不需要了解系统的工作原理、应用程序中的源代码以及具体架构。相反,他们只需要向系统提供必要的情报数据,并由AI自主进行相应调整。
当然,一定程度的AI知识仍然是必要的。根据Drew Conway提出的数据科学维恩图概念,AI的开发与实施依托于两项重要技能:计算机科学技能,以及数学与统计学知识。如果没有这些基础,原本在实验室环境中运行良好的模型很可能在处理现实问题时遭遇失败。
无代码或低代码
另一种流行的实现方法,则是无代码与低代码平台。此类平台能够帮助企业通过简单的拖拽界面开发应用程序。无代码与低代码工具将成为科技巨头们的下一个战斗前线,Amazon新近发布的Honeycode平台就是最好的证明。这是一个总值达132亿美元的市场,预计到2025年其总价值将进一步提升至455亿美元。
对话式AI平台Kore.ai首席执行官兼创始人Raj Koneru表示,无代码方法具有诸多优势。“用户可以轻松定制无代码平台以开发应用程序。以往需要数周甚至数月才能完成的工作,现在可以在数天或者数小时内完成。”
无代码平台的另一大显著优势,在于易于定制。根据Koneru的介绍,无代码平台允许大家“实施新逻辑,并在几小时之内为更改做好准备。更重要的是,这类平台能够尽可能对接更多参与者,帮助几乎每一个人即时实现所需的功能,而无需费时向其他IT开发者解释需求与情况。”
但无代码平台也有自己的缺点。大多数无代码/低代码平台以云端为基础,长期使用之后必然会产生严重的供应商锁定问题。换言之,未来的平台变更将极为困难且耗时。同样的,无代码应用程序往往只能在特定的范围之内良好运作,而用户一旦需要超出系统内置设定的其他功能,则会遇到困难。
当然,也存在克服这些问题的方法。例如,Kore.ai在直接提供拖拽开发界面之外,也向开发人员开放API连接,允许他们以更大的自由空间开发额外功能。Radial就是一套面向电子商务企业分析类需求的AI平台,能够为普通用户提供即插即用型解决方案,同时也为高级客户准备了大量API工具。
最佳方法
AI技术的重要性不可低估。如果无法从数据中提取价值与信息,企业将在激烈的市场竞争中处于劣势。而具体采用哪种AI部署方法,则取决于您的业务需求与技术能力。在transformer学习、无代码与低代码平台之间做出正确选择,将帮助您顺利实现业务目标,通过适当界面开发应用程序,同时保证功能需求始终处于当前平台的支持范围之内。
好文章,需要你的鼓励
浙江大学团队提出动态专家搜索方法,让AI能根据不同问题灵活调整内部专家配置。该方法在数学、编程等任务上显著提升推理准确率,且不增加计算成本。研究发现不同类型问题偏爱不同专家配置,为AI推理优化开辟新路径。
清华大学研究团队提出SIRI方法,通过"压缩-扩张"交替训练策略,成功解决了大型推理模型"话多且准确率低"的问题。实验显示,该方法在数学竞赛题上将模型准确率提升43.2%的同时,输出长度减少46.9%,真正实现了效率与性能的双重优化,为AI模型训练提供了新思路。
南洋理工大学与腾讯联合研究团队开发出Rolling Forcing技术,实现AI视频实时流式生成的重大突破。该技术通过滚动窗口联合去噪、注意力锚点机制和高效训练算法三项创新,解决了长视频生成中的错误累积问题,可在单GPU上以16fps速度生成多分钟高质量视频,延迟仅0.76秒,质量漂移指标从传统方法的1.66降至0.01,为交互式媒体和内容创作开辟新可能。
华中科技大学研究团队发现,通过让AI模型学习解决几何问题,能够显著提升其空间理解能力。他们构建了包含约30000个几何题目的Euclid30K数据集,使用强化学习方法训练多个AI模型。实验结果显示,几何训练在四个空间智能测试基准上都带来显著提升,其中最佳模型达到49.6%准确率,超越此前最好成绩。这项研究揭示了基础几何知识对培养AI空间智能的重要价值。