最近,索尼人工智能团队和韩国高丽大学联合开发了一种名为FlavorGraph的人工智能映射工具,该工具可以推荐互补的配料,帮助厨师们烹饪菜肴。
索尼人工智能团队表示,FlavorGraph使用人工智能技术预测两种成分的匹配程度,FlavorGraph可以将从不同成分中发现的1,561种风味分子里提取的信息同以往数百万种食谱对这些配料的使用情况结合起来。
索尼人工智能战略和合作伙伴经理Fred Gifford和韩国高丽大学博士后研究生Donghyeon Park在一篇博客文章中写道:“以往从未有人探索过食品成分与风味化合物之间的关系,而FlavorGraph的研究将为某一种或者多种成分与其他成分的搭配提供更大的灵活性。”
“随着科学的发展,我们对食物的了解越来越深入,我们应该发现越来越多有趣的配料搭配,以及那些不健康或者不可持续配料的、新的替代品。”
FlavorGraph是索尼人工智能团队美食旗舰项目的首批项目之一。这家日本科技巨头于去年年底建立了自己的机器学习和人工智能研发部门,该团队称该项目的重点将落在三个关键的领域:可以创建新食谱的人工智能应用程序、可以在厨房为厨师提供帮助的机器人解决方案及社区共同创造活动。
索尼人工智能团队表示他们将使用数据源开发食谱创建应用程序,这些数据包括食谱和成分数据,例如味道、香气、风味、分子结构和营养成分,据此,该程序有望能够帮助厨师设计食谱和菜单。
还有其他一些关于索尼的新闻,该公司的半导体业务宣布其绰号为“Fab 5”的新工厂已经在长崎技术中心开业。索尼表示,这间新工厂将被用于批量生产用于智能手机的CMOS图像传感器。
好文章,需要你的鼓励
这项研究利用大语言模型解决科学新颖性检测难题,南洋理工大学团队创新性地构建了闭合领域数据集并提出知识蒸馏框架,训练轻量级检索器捕捉想法层面相似性而非表面文本相似性。实验表明,该方法在市场营销和NLP领域显著优于现有技术,为加速科学创新提供了有力工具。
un?CLIP是一项创新研究,通过巧妙反转unCLIP生成模型来增强CLIP的视觉细节捕捉能力。中国科学院研究团队发现,虽然CLIP在全局图像理解方面表现出色,但在捕捉细节时存在不足。他们的方法利用unCLIP生成模型的视觉细节表示能力,同时保持与CLIP原始文本编码器的语义对齐。实验结果表明,un?CLIP在MMVP-VLM基准、开放词汇语义分割和视觉中心的多模态任务上显著优于原始CLIP和现有改进方法,为视觉-语言模型的发展提供了新思路。
这项研究介绍了RPEval,一个专为评估大语言模型角色扮演能力而设计的新基准。研究团队从法国里尔大学开发的这一工具专注于四个关键维度:情感理解、决策制定、道德对齐和角色一致性,通过单轮交互实现全自动评估。研究结果显示Gemini-1.5-Pro在总体表现上领先,而GPT-4o虽在决策方面表现出色,但在角色一致性上存在明显不足。这一基准为研究人员提供了一个可靠、可重复的方法来评估和改进大语言模型的角色扮演能力。
这篇论文介绍了LegalSearchLM,一种创新的法律案例检索方法,将检索任务重新定义为法律要素生成。研究团队构建了LEGAR BENCH数据集,涵盖411种犯罪类型和120万案例,并开发了能直接生成关键法律要素的检索模型。实验表明,该模型在准确率上超越传统方法6-20%,且在未见犯罪类型上展现出强大泛化能力。这一突破为法律专业人士提供了更高效、精准的案例检索工具。