教育焦虑已经成了全民话题。去年以来,从舆论导向到配套政策,似乎也在回应这个问题。其中一个手段是「分流」,也就是在社会关注度最高的高考之前,把学生分流到不同的教育层次。
这种措施已经实打实地在进行了,比如高考虽然关注度高,但它不是难度最大的考试,因为它的录取率有75%,而高中的录取率在未来会保持或迈向50%。
这种「分流」能解决教育焦虑吗?我们先来做两个假设。
第一个假设关于“桃子”。假设有三个人,都喜欢吃桃子,但是只有4个桃子,每人分不到2个。如果分桃子的人说,让我们来减少一半的桃子至2个,功劳少的两个人可以选择退出,剩下的一个人就可以拿到2个桃子了。
第二个假设关于“苹果”。假设有三个人,都喜欢金苹果。但是只有2个金苹果,不能保证每人1个。分苹果的人说,让我们减少1个金苹果,不够漂亮的两个人可以退出,剩下的那个最美的人就可以保证拿到金苹果了。
两个假设中,分别的三个人,是否会有人在减少了桃子和苹果的情况下,主动选择退出,让剩下的人轻松拿到奖励,避免三个人的共同焦虑?
这两个假设,其实有现成的答案。
第一个假设,如果发生在春秋战国,结局会变成三个人都自刎而亡。这就是著名的“二桃杀三士”的故事。
第二个假设,如果发生在希腊神话里,结局将会是引发一场战争,那就是“特洛伊之战”。
回到教育焦虑这件事儿。
其实这和分桃子、金苹果的故事很像。家长们非常重视子女教育,但是优秀的大学名额是有限的,造成了激烈的竞争。
而高考前的「分流」,从高中阶段减少入学名额,提高中考难度,就相当于减少奖励比例,让有些人知难而退,从而降低高层次竞争难度。
但是桃子和苹果的故事告诉我们,减少供给,并不会减少焦虑,反而会让竞争变得更加惨烈。
因为教育从来不是教育问题,而是一个相对公平的,提供阶层跃升,或者阶层更新的竞争系统。
这就好比,要解决高房价,暂停土地拍卖和叫停房地产融资,也不可能让房价下降,只有提供更多低成本的土地才可以。
只有增加供给,才能让竞争者的心态更平和,焦虑更少。
减少优质资源供给,或者设定前置分流系统,只会让焦虑更加严重,或者让焦虑换一种方式存在。
好文章,需要你的鼓励
这项研究利用大语言模型解决科学新颖性检测难题,南洋理工大学团队创新性地构建了闭合领域数据集并提出知识蒸馏框架,训练轻量级检索器捕捉想法层面相似性而非表面文本相似性。实验表明,该方法在市场营销和NLP领域显著优于现有技术,为加速科学创新提供了有力工具。
un?CLIP是一项创新研究,通过巧妙反转unCLIP生成模型来增强CLIP的视觉细节捕捉能力。中国科学院研究团队发现,虽然CLIP在全局图像理解方面表现出色,但在捕捉细节时存在不足。他们的方法利用unCLIP生成模型的视觉细节表示能力,同时保持与CLIP原始文本编码器的语义对齐。实验结果表明,un?CLIP在MMVP-VLM基准、开放词汇语义分割和视觉中心的多模态任务上显著优于原始CLIP和现有改进方法,为视觉-语言模型的发展提供了新思路。
这项研究介绍了RPEval,一个专为评估大语言模型角色扮演能力而设计的新基准。研究团队从法国里尔大学开发的这一工具专注于四个关键维度:情感理解、决策制定、道德对齐和角色一致性,通过单轮交互实现全自动评估。研究结果显示Gemini-1.5-Pro在总体表现上领先,而GPT-4o虽在决策方面表现出色,但在角色一致性上存在明显不足。这一基准为研究人员提供了一个可靠、可重复的方法来评估和改进大语言模型的角色扮演能力。
这篇论文介绍了LegalSearchLM,一种创新的法律案例检索方法,将检索任务重新定义为法律要素生成。研究团队构建了LEGAR BENCH数据集,涵盖411种犯罪类型和120万案例,并开发了能直接生成关键法律要素的检索模型。实验表明,该模型在准确率上超越传统方法6-20%,且在未见犯罪类型上展现出强大泛化能力。这一突破为法律专业人士提供了更高效、精准的案例检索工具。