教育焦虑已经成了全民话题。去年以来,从舆论导向到配套政策,似乎也在回应这个问题。其中一个手段是「分流」,也就是在社会关注度最高的高考之前,把学生分流到不同的教育层次。
这种措施已经实打实地在进行了,比如高考虽然关注度高,但它不是难度最大的考试,因为它的录取率有75%,而高中的录取率在未来会保持或迈向50%。
这种「分流」能解决教育焦虑吗?我们先来做两个假设。
第一个假设关于“桃子”。假设有三个人,都喜欢吃桃子,但是只有4个桃子,每人分不到2个。如果分桃子的人说,让我们来减少一半的桃子至2个,功劳少的两个人可以选择退出,剩下的一个人就可以拿到2个桃子了。
第二个假设关于“苹果”。假设有三个人,都喜欢金苹果。但是只有2个金苹果,不能保证每人1个。分苹果的人说,让我们减少1个金苹果,不够漂亮的两个人可以退出,剩下的那个最美的人就可以保证拿到金苹果了。
两个假设中,分别的三个人,是否会有人在减少了桃子和苹果的情况下,主动选择退出,让剩下的人轻松拿到奖励,避免三个人的共同焦虑?
这两个假设,其实有现成的答案。
第一个假设,如果发生在春秋战国,结局会变成三个人都自刎而亡。这就是著名的“二桃杀三士”的故事。
第二个假设,如果发生在希腊神话里,结局将会是引发一场战争,那就是“特洛伊之战”。
回到教育焦虑这件事儿。
其实这和分桃子、金苹果的故事很像。家长们非常重视子女教育,但是优秀的大学名额是有限的,造成了激烈的竞争。
而高考前的「分流」,从高中阶段减少入学名额,提高中考难度,就相当于减少奖励比例,让有些人知难而退,从而降低高层次竞争难度。
但是桃子和苹果的故事告诉我们,减少供给,并不会减少焦虑,反而会让竞争变得更加惨烈。
因为教育从来不是教育问题,而是一个相对公平的,提供阶层跃升,或者阶层更新的竞争系统。
这就好比,要解决高房价,暂停土地拍卖和叫停房地产融资,也不可能让房价下降,只有提供更多低成本的土地才可以。
只有增加供给,才能让竞争者的心态更平和,焦虑更少。
减少优质资源供给,或者设定前置分流系统,只会让焦虑更加严重,或者让焦虑换一种方式存在。
好文章,需要你的鼓励
AIM Intelligence联合多所知名大学揭示了音频AI系统的重大安全漏洞,开发出名为WhisperInject的攻击方法。这种攻击能让看似无害的音频指令操控AI生成危险内容,成功率超过86%,完全绕过现有安全机制。研究暴露了多模态AI系统的系统性安全风险,对全球数十亿智能设备构成潜在威胁。
新加坡国立大学研究团队系统梳理了视觉强化学习领域的最新进展,涵盖超过200项代表性工作。研究将该领域归纳为四大方向:多模态大语言模型、视觉生成、统一模型框架和视觉-语言-动作模型,分析了从RLHF到可验证奖励范式的政策优化策略演进,并识别出样本效率、泛化能力和安全部署等关键挑战,为这一快速发展的交叉学科提供了完整的技术地图。
浙江大学研究团队通过OmniEAR基准测试揭示了当前AI模型在物理世界推理方面的严重缺陷。测试显示,即使最先进的AI在明确指令下能达到85-96%成功率,但面对需要从物理约束推断行动的任务时,成功率骤降至56-85%。研究发现信息过载反而降低AI协作能力,监督学习虽能改善单体任务但对多智能体协作效果甚微,表明当前架构存在根本局限性。
纽约大学和Aimpoint Digital Labs的研究团队首次揭示了Transformer模型训练中"大规模激活"的完整发展轨迹。这些影响力比普通激活大千倍的"超级激活"遵循可预测的数学规律,研究者开发出五参数公式能以98.4%准确率预测其变化。更重要的是,通过调整模型架构参数如注意力密度、宽深比等,可以在训练前就预测和控制这些关键激活的行为,为设计更高效、量化友好的AI模型提供了全新工具。