氮化镓 (GaN) 功率芯片行业领导者纳微半导体(Navitas Semiconductor)宣布,开设新的电动汽车 (EV) 设计中心,进一步扩展到更高功率的氮化镓市场。与传统的硅解决方案相比,基于氮化镓的车载充电器 (OBC) 的充电速度估计快 3 倍,节能高达 70%。据估计,氮化镓OBC、DC-DC 转换器和牵引逆变器将有望延长电动汽车续航里程,或将电池成本降低 5%,和原先使用硅芯片相比,氮化镓功率芯片有望加速全球 EV 的普及提前三年来到。据估计,到 2050 年,将电动汽车升级到使用GaN之后,道路部门的二氧化碳排放量每年有望减少 20%,这也是《巴黎协定》的减排目标。

氮化镓 (GaN) 器件是功率半导体技术的前沿,其运行速度比传统硅芯片快 20 倍。 Navitas 的 GaNFast™ 功率芯片集成了 GaN 电源、GaN 驱动、保护和控制。高速和高效率已成为节能、高功率密度、低成本和更高可靠性的新行业标准。
新的设计中心位于中国上海,拥有一支经验丰富的世界级电力系统设计师团队,他们在电气、热力和机械设计、软件开发以及完整的仿真和原型设计能力方面具有全面的能力。新团队将在全球范围内为电动汽车客户提供支持,从概念到原型,再到全面认证和大规模生产。
著名电动汽车行业专家、上海设计中心新任高级总监孙浩先生表示:“设计中心将为全功能、可产品化的电动汽车动力系统开发原理图、布局和固件。 Navitas 将与 OBC、DC-DC 和牵引系统公司合作,创建具有最高功率密度和最高效率的创新世界级解决方案,以推动 GaN 进入主流电动汽车。”
为 EV 应用量身定制的高功率 650V GaN IC 已于2021年 12 月向 EV 客户提供样品。在最近的小米产投日活动上,纳微展示了 6.6kW OBC 概念模型,后在CES 上也进行了展示。
“纳微半导体电动汽车团队在提供动力系统方面拥有丰富的人才和成熟的经验,”纳微半导体副总裁兼中国区总经理查莹杰表示。 “对于 GaN 来说,电动汽车是一个令人兴奋的扩展市场,估计每辆 EV 内,氮化镓的潜在价值为250 美元。逐个市场来看,Navitas 正在快速推进到更高功率的应用,例如电动汽车、数据中心和太阳能。”
制造氮化镓功率芯片的二氧化碳排放量比硅芯片低 10 倍。考虑到效率以及材料尺寸和重量优势,每个出货的纳微氮化镓功率芯片相比硅可以节省大约 4 公斤的二氧化碳。总体而言,到 2050 年GaN 有望解决每年 2.6 Gton 的二氧化碳排放量减少问题。
好文章,需要你的鼓励
浙江大学团队提出动态专家搜索方法,让AI能根据不同问题灵活调整内部专家配置。该方法在数学、编程等任务上显著提升推理准确率,且不增加计算成本。研究发现不同类型问题偏爱不同专家配置,为AI推理优化开辟新路径。
清华大学研究团队提出SIRI方法,通过"压缩-扩张"交替训练策略,成功解决了大型推理模型"话多且准确率低"的问题。实验显示,该方法在数学竞赛题上将模型准确率提升43.2%的同时,输出长度减少46.9%,真正实现了效率与性能的双重优化,为AI模型训练提供了新思路。
南洋理工大学与腾讯联合研究团队开发出Rolling Forcing技术,实现AI视频实时流式生成的重大突破。该技术通过滚动窗口联合去噪、注意力锚点机制和高效训练算法三项创新,解决了长视频生成中的错误累积问题,可在单GPU上以16fps速度生成多分钟高质量视频,延迟仅0.76秒,质量漂移指标从传统方法的1.66降至0.01,为交互式媒体和内容创作开辟新可能。
华中科技大学研究团队发现,通过让AI模型学习解决几何问题,能够显著提升其空间理解能力。他们构建了包含约30000个几何题目的Euclid30K数据集,使用强化学习方法训练多个AI模型。实验结果显示,几何训练在四个空间智能测试基准上都带来显著提升,其中最佳模型达到49.6%准确率,超越此前最好成绩。这项研究揭示了基础几何知识对培养AI空间智能的重要价值。