作者:Neo4j亚太区市场副总裁伍长辉
如今,营销人员可以获得比以往任何时候都多且呈指数级增长的数据。新冠疫情所驱动的数字化加速缔造了一个围绕消费者、产品和购买行为的海量数据库。
据Statista预计,至2025年全球数据创建量——即创建、捕获、复制和使用的数据总量,将增长至180多ZB。
挑战在于如何筛选数据并辨别出能够产生有价值洞察的趋势和模式。作为一个庞大的数据洪流,如果没有上下文情景和相关性,它对营销人员则几乎毫无价值。营销人员如何转换信息并使数据更有意义和用处呢?

Neo4j亚太区市场副总裁伍长辉
知识图谱的力量
在当今数据丰富的世界中,营销人员可以通过知识图谱将数据转化为更大的营销智能。与拥有数据行和列的传统表格数据库截然不同,知识图谱将数据及其之间的关系存储为连接节点,然后以颜色和形状的方式直观地展示,从而轻松检测模式和异常情况。
例如,在Excel电子表格中,登陆一个客户数据集与他们的购买历史数据集非常容易。但是,尝试添加额外的上下文情景,例如人口统计信息、购买路径、购买时间和日期、当地的气候模式就显得既困难又笨重,也无法在一张表格内完成。然而,这种上下文情景对于确认是谁、在何时、购买什么以及怎样购买至关重要。
知识图谱旨在洞察客户需求、产品和市场趋势,减缓持续增长、高度互连的数据集带来的挑战。他们擅长关联和管理大量买家和产品数据以应对复杂的查询。
分析营销效果
例如要分析网站活动并跟踪人们如何在网站上找到不同的页面:例如通过点击广告、搜索引擎、社交媒体或电子邮件链接。这将有助于了解当前的营销活动是否有效,还可深入洞察可能成为客户的网站访问者的行为。
在知识图谱中,所有页面和营销渠道都作为节点相互连接。通过向连接(关系)添加上下文情景,便可开始进行复杂的查询。如果获得访问时间的数据,则可以分析个别营销渠道绩效的进展和对特定页面的兴趣。通过添加相关访问者的位置数据,可以分析某些渠道是否更适合特定的区域市场。
实时推荐
实时推荐引擎对于在线零售商至关重要,其目的是推送相关产品建议,并邀请购物者将最后一分钟选定的心仪产品添加到在线购物车中。这能实现双赢:供应商可以出售高利润商品、积压商品及提供促销活动,而购买者可以发现有用且相关的商品,从而改善客户体验。
生成相关推荐需要即时关联产品、客户、库存、供应商、物流甚至社会情绪指数等数据,并即时捕捉客户当前访问显示的新兴趣。实时筛选所有这些数据的能力是传统关系数据库所不具备的。
对于知识图谱来说,匹配历史数据和会话数据并不重要。知识图谱可以使用多种推荐方法并对其进行加权,例如基于相似用户或产品、用户历史和个人资料或业务策略(促销、利润、库存)做推荐。
了解客户
在后Cookie时代,知识图谱提供了一种关联海量买家和产品数据的方法,以生成对产品趋势和客户需求的洞察。
在这一领域,知识图谱的速度远远超过传统方法。它们可用于分析网络流量和点击流数据并建立独特的客户档案。
美国媒体集团Meredith Corporation使用图算法将数十亿的页面浏览量转换为具有丰富浏览配置文件的数百万个假名标识符。然后,将3.5亿个被视为具有不同兴趣和模式特征的个人资料整合为1.63亿个更丰富、更准确的个体资料。这能帮助集团更好地了解客户并开展高效营销。
根据2020 Neo4j Pulse调查显示,近90%的CXO认为知识图谱将显著提升企业利润。Gartner预测,到2025年,图技术将用于80%的数据和分析创新,远远高于今年的10%。最终,知识图谱将协助营销人员实现目标,并增强企业的竞争优势,实现业务的全面成功。
好文章,需要你的鼓励
谷歌DeepMind等顶级机构联合研究揭示,当前12种主流AI安全防护系统在面对专业自适应攻击时几乎全部失效,成功率超过90%。研究团队通过强化学习、搜索算法和人类红队攻击等多种方法,系统性地突破了包括提示工程、对抗训练、输入过滤和秘密检测在内的各类防护技术,暴露了AI安全评估的根本缺陷。
西蒙弗雷泽大学和Adobe研究院联合开发的MultiCOIN技术,能够将两张静态图片转换为高质量的过渡视频。该技术支持轨迹、深度、文本和区域四种控制方式,可单独或组合使用。采用双分支架构和分阶段训练策略,在运动控制精度上比现有技术提升53%以上,为视频制作提供了前所未有的灵活性和精确度。
英国国王学院研究团队开发了潜在精炼解码(LRD)技术,解决了AI文本生成中的速度与准确性平衡难题。该方法通过两阶段设计模仿人类思考过程:先让AI在连续空间中"深思熟虑",保持多种可能性的混合状态,然后"果断行动",逐步确定答案。实验显示,LRD在编程和数学推理任务中准确性提升最高6.3个百分点,生成速度提升最高10.6倍,为AI并行文本生成开辟了新路径。
清华大学团队开发的ViSurf是一种创新的大型视觉语言模型训练方法,巧妙融合了督导式学习和强化学习的优势。该方法通过将标准答案整合到强化学习过程中,让AI既能从正确答案中学习又能保持自主推理能力。实验显示ViSurf在多个视觉任务上显著超越传统方法,特别是在处理模型知识盲区时表现突出,同时有效避免了灾难性遗忘问题,为AI训练提供了更高效稳定的新范式。