
以“智联世界、元生无界”为主题的2022 世界人工智能大会(WAIC)于9月3日在上海圆满落幕。WAIC作为全球人工智能的“科技风向标、应用展示台、产业加速器、治理议事厅”,是全球人工智能领域最具影响力的行业盛会。
「WAIC 2022 · AI 开发者日」作为WAIC大会最重要的技术论坛之一,以“AI开发者所真正关注的”为主题,汇聚了2021 年图灵奖得主、中外院士、世界级技术专家与科技企业创始人等 15 位学术界和产业界重磅嘉宾。九章云极DataCanvas公司开源技术副总裁、D-Lab主任杨健受邀出席论坛,并围绕如何运用完整的、综合性、端到端因果学习工具包解决“因果发现、因果量识别、因果效应估计、反事实推断和策略学习”五大关键问题,发表了《YLearn:因果学习,从预测到决策》的精彩主题演讲。

因果学习:人工智能发展的技术突破口
随着机器学习和深度学习在发展过程中遇到技术瓶颈,人工智能发展速度逐渐放缓,究其原因,一方面是机器学习存在着泛化能力较弱、解释性不强、决策支持能力不足的关键性问题;另一方面政府和企业提出“智能决策”的需求,即以数据驱动的方式实现自动化决策来提高整体运营效率。
随着机器学习建模越来越多的应用,人工智能技术从预测性分析向指导性分析升级转移,自动化“决策”成为政府和企业在数智化时代的核心需求,决策者需要一个可理解的AI决策逻辑以及具有可信度、可解释的决策结果。而当前机器学习主要是完成预测性任务,难以满足政府和企业自动化决策的需求。
Gartner发布的《2022年新兴技术成熟度曲线》中提到,因果人工智能是加速AI自动化的关键技术之一。因果学习成为补充机器学习问题的关键技术,人工智能发展极具潜力的技术突破口,引发业界的广泛关注和热点研究。
YLearn:因果学习,从预测到决策
2019年图灵奖得主Yoshua Bengio先生曾提到,“因果关系对于机器学习的下一步进展非常重要”。从2019年开始,因果学习的学术研究新成果不断出现,发表的相关论文数量每年都在翻倍增长。目前,从国内外关于因果学习的研发来看,出现了很多因果学习的工具,例如DoWhy、围绕解决因果效应评估类问题的EconML,用来完成uplift建模的CausalML以及专注解决因果发现问题的Causal Learn。但这些工具都只能解决因果学习中的部分问题,又因为不同的工具所依赖的理论框架和结构体系不同,导致工具包之间也难以融合使用。因果学习领域则是缺少系统、完整的、综合性、端到端的工具包。
九章云极DataCanvas公司自主研发的一站式处理因果学习完整流程的开源算法工具包YLearn,是目前首款端到端、较完整、较系统的因果学习算法工具包,率先解决了因果学习中“因果发现、因果量识别、因果效应估计、反事实推断和策略学习”五大关键问题,降低“决策者”使用门槛,不断满足政府和企业自动化“决策”的需求。

GitHub 地址:https://github.com/DataCanvasIO/YLearn
YLearn由CausalDiscovery、CausalModel、EstimatorModel、Policy、Interpreter、Whatif等部件组成,各部件支持独立使用,也支持统一封装。为帮助用户更直观地理解数据、调整策略,YLearn提供了因果图、因果效应解释、决策树等重要模块的可视化输出。
与国内外因果学习工具相比,九章云极DataCanvas公司的YLearn具有一站式、新而全、用途广的特点。

结合政府和企业在决策任务上的需求,YLearn将与九章云极DataCanvas公司的自动机器学习平台相结合,通过与AutoML技术的融合,提高机器学习的鲁棒性、泛化能力和解释性,实现因果学习的自动调参和优化,进一步降低使用门槛。同时,YLearn解决了市场上缺失功能强大且完整的因果学习工具包这一“卡脖子”难题,将技术回归业务,支持决策类业务场景,为客户提供多种决策方案。
因果学习助力人工智能迈向新阶段
人工智能技术作为新一轮科技革命和产业变革的核心力量,正处于从预测迈向决策的新发展阶段。因果学习在这一阶段发挥着重要作用,弥补机器学习的理论缺陷,逐步解决从“是什么”到“为什么”的问题,从政府和企业的需求出发,提升“AI决策”的可信度和可用度,将AI能力更进一步交为业务所用。
为了更好的带动国内因果学习领域的发展,推动因果学习的多元化发展,九章云极DataCanvas公司联合世界人工智能大会组委会办公室、机器之心、上海市人工智能行业协会、天池共同举办黑客松「因果学习和决策优化挑战赛」,为全球各路开发者精英们提供同台竞技的平台。挑战赛以“如何优化干预方案能使因果效应最大”为主题,将因果学习中的普适性问题具化,旨在考察选手使用因果推断在决策方案制定问题上的估计能力。
作为业界首个面向「因果推断全流程」的赛事,收到来自全国各地包括运用人工智能相关技术赋能数智化升级的企业、结合人工智能技术进行创新探索的科研单位、高等院校的团队及专业开发者等近四千支队伍报名参赛。参赛队伍经过23天的同台竞技,不断探索因果学习领域的技术高峰,刷新成绩纪录,角逐出TOP18具有雄厚的AI技术实力以及富有创造力的优胜队伍。

未来,九章云极DataCanvas公司将不断创新研发开源工具,将政府和企业的业务需求与技术实践相结合,助力政府和企业数智化升级,推动人工智能向新阶段。
好文章,需要你的鼓励
Adobe研究院与UCLA合作开发的Sparse-LaViDa技术通过创新的"稀疏表示"方法,成功将AI图像生成速度提升一倍。该技术巧妙地让AI只处理必要的图像区域,使用特殊"寄存器令牌"管理其余部分,在文本到图像生成、图像编辑和数学推理等任务中实现显著加速,同时完全保持了输出质量。
香港科技大学团队开发出A4-Agent智能系统,无需训练即可让AI理解物品的可操作性。该系统通过"想象-思考-定位"三步法模仿人类认知过程,在多个测试中超越了需要专门训练的传统方法。这项技术为智能机器人发展提供了新思路,使其能够像人类一样举一反三地处理未见过的新物品和任务。
韩国KAIST开发的Vector Prism系统通过多视角观察和统计推理,解决了AI无法理解SVG图形语义结构的难题。该系统能将用户的自然语言描述自动转换为精美的矢量动画,生成的动画文件比传统视频小54倍,在多项评估中超越顶级竞争对手,为数字创意产业带来重大突破。
华为诺亚方舟实验室提出VersatileFFN创新架构,通过模仿人类双重思维模式,设计了宽度和深度两条并行通道,在不增加参数的情况下显著提升大语言模型性能。该方法将单一神经网络分割为虚拟专家并支持循环计算,实现了参数重用和自适应计算分配,为解决AI模型内存成本高、部署难的问题提供了全新思路。