
作者|高飞
操作系统和数字体验的关系是最直接和紧密的。
举个例子来看,20年前,1992年微软发布了划时代的操作系统,可以流畅支持鼠标操作的Windows 3.1。这就意味着,即使一个用户的电脑的硬件没有任何升级变化,假设还是286或386,也依然可以通过一个叫“扫雷”的游戏体验到用鼠标操作电脑的乐趣。
这个例子,也可以直接套用到鸿蒙(HarmonyOS)操作系统的一项特性——分布式能力上。
鸿蒙强调了它的八项创新能力,包括分布式能力、原子化服务、AI、地图、音视频、隐私安全等,「分布式」是第一个创新特征。
当时被强调最多的特性,也是分布式,即支撑鸿蒙作为面向万物互联的操作系统最核心能力。
消费者的手机即使是硬件没有任何的变化,也能够通过鸿蒙的分布式软总线、端云协同等能力,获得以前没有感受过的跨设备应用和数据流转体验。
而对开发者来说,他们也得到了“一次开发,多端部署”的编程体验,更容易开发出“终端可分可合,数据自由流转”的应用场景。
因此,鸿蒙做的事儿,虽然初衷是替代,但是,是更有意义的替代,也是鸿蒙区别于同行,在发展理念上的第一个发展抓手。
当然,只有新特性,还不足以吸引开发者的目光。
几十年前,IBM的OS/2 操作系统,有很多Windows 没有的特性,但是因为装机量不够多,所以缺乏开发者新的应用支持,所以还是没能赢过微软。
鸿蒙的第二个抓手就是装机量。
华为不能再用谷歌GMS的时候,正值智能手机业务发展的高峰,不仅在中国,甚至在欧洲市场也塑造了高端品牌形象。
但是对于开发者来说,更重要的是,华为手机的既有的巨大的存量市场。
有了数亿现有设备的支持,和后续虽然没有5G、但是依然得到国内消费者追捧的新机,让鸿蒙平台的开发者更容易、更快速的获得市场回报,而不是像早期Linux系统的发展一样,要经历一个漫长的爬坡期。
或许是鸿蒙系统本来是为物联网系统打造的,所以鸿蒙从一开始,就非常注重非手机终端的支持。
我们一直在说“万物互联,万物智能”。鸿蒙应该是这八个字的坚定践行者。
拿业界最关心的产品「汽车」来说。
虽然对于汽车的评价有多样化的指标,消费者也有多元化的口味,但是目前来看,鸿蒙赋能的车机体验,确实有比较一致的好口碑。
所以,余承东就曾经毫不客气的说,鸿蒙座舱是“车机天花板”,特别是,有像“手机”一样流畅丝滑的车机。
不过,还有一些非常值得关注的,也是比较容易被忽视的行业场景。
比如在医疗健康领域,华为和301医院、北京大学第一医院合作,做到基于华为手表检测到的HRV、呼吸率、血氧、异常咳嗽音等生理参数,进行肺功能评估,实现慢阻肺风险筛查。
实际上,相对消费电子这样对AI等新技术使用的非常靠前的领域,传统行业有许多场景是落后于技术发展的。甚至,如果用技术用的不好,还不如没有技术。
无疑,以后的房屋装修,除了传统的水电墙面木工,必然会增加一项以网络为核心的数字化、智能化。
其实严格来说,汽车也属于这个范畴。如果没有新能源和智能化两个新引擎,百年汽车工业的市场版图,一定不会是现在的面貌。
把智能手机上已经用的非常纯熟的AI等能力,正如同将元气释放到传统行业中实现数字化转型,这是鸿蒙作为新OS的第三个抓手,应该也是最有潜力的抓手。
好文章,需要你的鼓励
浙江大学团队提出动态专家搜索方法,让AI能根据不同问题灵活调整内部专家配置。该方法在数学、编程等任务上显著提升推理准确率,且不增加计算成本。研究发现不同类型问题偏爱不同专家配置,为AI推理优化开辟新路径。
清华大学研究团队提出SIRI方法,通过"压缩-扩张"交替训练策略,成功解决了大型推理模型"话多且准确率低"的问题。实验显示,该方法在数学竞赛题上将模型准确率提升43.2%的同时,输出长度减少46.9%,真正实现了效率与性能的双重优化,为AI模型训练提供了新思路。
南洋理工大学与腾讯联合研究团队开发出Rolling Forcing技术,实现AI视频实时流式生成的重大突破。该技术通过滚动窗口联合去噪、注意力锚点机制和高效训练算法三项创新,解决了长视频生成中的错误累积问题,可在单GPU上以16fps速度生成多分钟高质量视频,延迟仅0.76秒,质量漂移指标从传统方法的1.66降至0.01,为交互式媒体和内容创作开辟新可能。
华中科技大学研究团队发现,通过让AI模型学习解决几何问题,能够显著提升其空间理解能力。他们构建了包含约30000个几何题目的Euclid30K数据集,使用强化学习方法训练多个AI模型。实验结果显示,几何训练在四个空间智能测试基准上都带来显著提升,其中最佳模型达到49.6%准确率,超越此前最好成绩。这项研究揭示了基础几何知识对培养AI空间智能的重要价值。