“解好电力行业的关键问题,有可能会引领下一波AI浪潮。”中国工程院院士、阿里云创始人王坚2月17日在南方电网总部参加第四届电力调度AI应用大赛时表示。该大赛由南方电网、中国电机工程学会电力系统自动化专委会主办,阿里云承办、阿里达摩院协办。
图:中国工程院院士、阿里云创始人 王坚
王坚认为,纵观AI的发展历程,从Alpha Go、ImageNet到Alpha Fold、ChatGPT,都是通过对某一个问题的攻克,从而带动了人工智能的巨大进步。相信电力行业、工业领域也能找到这样一个问题,这将对社会发展、人类生活带来更大、更切实的影响。
王坚介绍,在1950年代,人类可以想象AI最了不起的事情就是“下棋”。直到深蓝、AlphaGo的出现,AI打败了国际象棋大师,人工智能技术有了很大进步。
几年后,针对“图像识别”这一问题,在AI界又出现了基于深度学习的ImageNet,使得机器对人脸的识别率超过了人类。这又将人工智能带到了新的高度。
近年来出现的Alpha fold,在发现蛋白质结构方面的能力已经超过了一流的科学家,挑战着他们毕生的专业经验。ChatGPT则通过聊天这一场景,为自然语言处理带来了全新的变革。
“人工智能的每次跨越,都是围绕着对某一个问题的攻坚,”王坚说,问题定义得好,可以反过来带动人工智能学科的发展。
王坚指出,工业是用新技术最好的地方。在电力行业、工业领域,我们可以找到比“下棋”更有高度的问题,引领下一波AI浪潮。如果能找到、解好这样一个问题,对推动社会经济发展、人类生活变化,会产生更巨大、更积极的影响。
好文章,需要你的鼓励
这项研究利用大语言模型解决科学新颖性检测难题,南洋理工大学团队创新性地构建了闭合领域数据集并提出知识蒸馏框架,训练轻量级检索器捕捉想法层面相似性而非表面文本相似性。实验表明,该方法在市场营销和NLP领域显著优于现有技术,为加速科学创新提供了有力工具。
un?CLIP是一项创新研究,通过巧妙反转unCLIP生成模型来增强CLIP的视觉细节捕捉能力。中国科学院研究团队发现,虽然CLIP在全局图像理解方面表现出色,但在捕捉细节时存在不足。他们的方法利用unCLIP生成模型的视觉细节表示能力,同时保持与CLIP原始文本编码器的语义对齐。实验结果表明,un?CLIP在MMVP-VLM基准、开放词汇语义分割和视觉中心的多模态任务上显著优于原始CLIP和现有改进方法,为视觉-语言模型的发展提供了新思路。
这项研究介绍了RPEval,一个专为评估大语言模型角色扮演能力而设计的新基准。研究团队从法国里尔大学开发的这一工具专注于四个关键维度:情感理解、决策制定、道德对齐和角色一致性,通过单轮交互实现全自动评估。研究结果显示Gemini-1.5-Pro在总体表现上领先,而GPT-4o虽在决策方面表现出色,但在角色一致性上存在明显不足。这一基准为研究人员提供了一个可靠、可重复的方法来评估和改进大语言模型的角色扮演能力。
这篇论文介绍了LegalSearchLM,一种创新的法律案例检索方法,将检索任务重新定义为法律要素生成。研究团队构建了LEGAR BENCH数据集,涵盖411种犯罪类型和120万案例,并开发了能直接生成关键法律要素的检索模型。实验表明,该模型在准确率上超越传统方法6-20%,且在未见犯罪类型上展现出强大泛化能力。这一突破为法律专业人士提供了更高效、精准的案例检索工具。