近日,ARM发布 2023全面计算解决方案(TCS23),并于北京举行了技术分享日活动,来自快手的技术专家分享了在大型项目中通过使用MTE来提升内存安全的最新实践。
ARM在 2023全面计算解决方案中,重点强调了内存标签扩展 (Memory Tagging Extension, MTE) 特性。据了解,MTE可以帮助开发者在部署之前和之后检测到内存安全问题,保证App内存稳定性提升用户体验,并减少安全漏洞降低受到攻击的可能性。
作为领先的短视频和直播平台,2023年一季度,快手应用的DAU同比增长8.3%达 3.74亿,短视频及直播内容的总观看次数同比增长超10%,累计互关用户对数超过296亿对。为了给用户提供极致体验,快手非常重视App稳定性和保护用户的隐私安全。
来自快手的技术专家李锐介绍,通过与ARM、Google、VIVO、荣耀等公司合作,快手在大型Android工程项目中使用 Arm MTE 提高内存安全,90% 的内存安全问题可以在 App 正式发布之前就在线下被检测拦截,全面保障线上用户的基础体验。
在追求高性能和跨平台的基础软件领域,快手使用C/C++/Assembly作为主要编程语言,这些语言提供了对内存的直接灵活控制,程序员需要手动管理内存,包括分配、释放和直接使用地址读写内存,通常被称为内存不安全的语言。
在快手这样量级的App里,由于多线程并发和对象生命周期的管理复杂,外加海量用户、高使用时长、碎片化设备等因素,很容易出现内存破坏的问题,导致了大量偶发崩溃。并且根据Google Android的报道,75%的漏洞都和内存非法使用有关。
过去,快手主要基于LLVM ASan工具进行内存破坏检测,由于传统内存检测工具的性能开销较高,且需要重新编译所有源代码,所以几乎无法在快手这样量级的大型项目日常开发实践中使用这些工具。
而快手MTE 自定义方案解决了这些问题,打破了传统内存检测工具的不可能三角。基于用户真实场景,在高内存负载下开启MTE,依然可以十分流畅的运行快手app。包括视频观看、主页刷feed流、生产拍摄、直播推拉流、电商等高频使用内存的业务场景。累计检出内存破坏bug数十个,包括自研库、三方库和系统GPU驱动库等,在保证内存安全方面发挥了重要作用。
快手稳定性团队是国内率先在Android应用侧把MTE技术完整落地用于大型App内存安全检测的,也早于Facebook和Unity在大型工程中实践,取得了不错的收益。并且ARM也在2023MWC世界移动通信大会上,将快手的实践作为Case Study展示。
李锐表示,通过与ARM等合作伙伴的共同努力,快手技术团队将持续提升系统稳定性和隐私安全,为用户提供更好的体验。
好文章,需要你的鼓励
这项由Midjourney团队主导的研究解决了AI创意写作中的关键问题:如何让AI既能写出高质量内容,又能保持创作的多样性和趣味性。通过引入"偏差度"概念和开发DDPO、DORPO两种新训练方法,他们成功让AI学会从那些被传统方法忽视的优秀独特样本中汲取创意灵感,最终训练出的模型在保持顶级质量的同时,创作多样性接近人类水平,为AI创意写作开辟了新方向。
上海AI实验室联合多所高校开发出VisualPRM系统,这是首个专门用于多模态推理的过程奖励模型。该系统能像老师批改作业一样逐步检查AI的推理过程,显著提升了AI在视觉推理任务上的表现。研究团队构建了包含40万样本的训练数据集和专门的评估基准,实现了在七个推理基准上的全面性能提升,即使是最先进的大型模型也获得了5.9个百分点的改进。
上海AI实验室团队通过LEGO积木设计了创新评测基准LEGO-Puzzles,系统测试了20个先进多模态大语言模型的空间推理能力。研究发现即使最强AI模型准确率仅57.7%,远低于人类93.6%的表现,揭示了当前AI在三维空间理解和多步序列推理方面的重大不足,为机器人、自动驾驶等应用发展提供重要参考。
字节跳动团队突破了AI图像生成领域的三大难题:身份识别不准确、文字理解偏差和图片质量不佳。他们开发的InfiniteYou技术采用创新的InfuseNet架构和多阶段训练策略,能够根据用户照片和文字描述生成高质量个性化图像。实验显示该技术在身份相似度、文本匹配度和图像质量方面均超越现有最佳方案,并具备出色的兼容性,为个性化内容创作开辟了新道路。